Molecular characterization of hepatitis B virus strains infecting blood donors with high HBsAg and undetectable HBV DNA levels: implications for blood safety and screening policy

D Candotti

Institut National de la Transfusion Sanguine
Dept. Agents Transmissibles par le Sang
Paris, France
Relative efficacy of HBV screening assays

<table>
<thead>
<tr>
<th>HBV infection features</th>
<th>Detected by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HBsAg</td>
</tr>
<tr>
<td>Window period</td>
<td>No</td>
</tr>
<tr>
<td>Primary OBI</td>
<td>No</td>
</tr>
<tr>
<td>2nd window period</td>
<td>No</td>
</tr>
<tr>
<td>Chronic infection</td>
<td>Yes</td>
</tr>
<tr>
<td>Anti-HBc+ OBI</td>
<td>No</td>
</tr>
<tr>
<td>Anti-HBs only OBI</td>
<td>No</td>
</tr>
<tr>
<td>Anti-HBc only</td>
<td>No</td>
</tr>
<tr>
<td>HBsAg only</td>
<td>Yes</td>
</tr>
</tbody>
</table>
HBV screening in French blood donations

- **1970**
 - HBsAg (ABBOTT PRISM® HBsAg)
- **1980**
 - Anti-HBc (ABBOTT PRISM™ HBcAb)
- **1990**
 - HBV DNA (Procleix-Ultrio™)
- **2000**
- **2010**

- High sensitivity and adequate specificity
- Pre-seroconversion window period & occult infections
 - Estimated HBV residual risk: 1 in 4 millions donations
- **But:**
 - High cost
 - Redundancy of HBsAg and HBV DNA direct markers
Maintaining HBsAg testing?

- Cost reduction of blood testing
- Complementarity of anti-HBc and HBV DNA testing (Enjalbert et al. Transfusion 2014;54:2485-95)
- Anti-HBc testing issues on blood availability in high endemic settings
- Potential impact on blood safety?
Distribution of HBV markers in French blood donors

- Period: 2010-2013
- Excluding overseas territories
- 10 186 279 donations tested → 806 HBV reactive (≈ 1/10,000)
HBsAg & HBV DNA discrepant levels in 740 samples confirmed HBsAg+

<table>
<thead>
<tr>
<th>Sample screening</th>
<th>Number (%)</th>
<th>HBV DNA load (IU/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Undetected</td>
</tr>
<tr>
<td>NAT neg.*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 (5%)</td>
<td>13 (32%)</td>
</tr>
<tr>
<td>NAT pos.</td>
<td>699 (95%)</td>
<td></td>
</tr>
<tr>
<td>• HBsAg < 100 IU/mL</td>
<td>58 (8%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>• HBsAg > 100 IU/mL</td>
<td>641 (87%)</td>
<td>13 (2%)</td>
</tr>
</tbody>
</table>

*NAT: Procleix-Ultrio (LOD 12 IU/mL)
Hypotheses

- **Ratio**: 1 viral particle / 1,000-10,000 HBsAg
 - Natural course of infection
 - HBV genotypes

- **Hypotheses**:
 - NAT failure
 - Impaired viral replication

- **Infectivity?**
Objectives

- Prevalence of HBsAg+/ NAT non-reactive or non-repeatable reactive donations
- Detect and/or confirm HBV DNA presence
- Evaluate and compare performance of NAT assays to detect these samples
- Perform genetic characterization of the viral strains associated with this phenotype
- Evaluate viral replicative properties \textit{in vitro} as a surrogate marker of infectivity
Study design

HBV+ donations

INTS/DATS
Viral load, genotyping

Group 1 (n=13)
HBsAg +/DNA NR

DNA extraction (2-5mL plasma)

3 nested PCRs
whole genome
BCP/PC
Pre-S/S

Sequencing

Genotyping
Genetic variability analysis

Group 2 (n=16)
HBsAg +/DNA R or NRR & non-quantifiable

3 nested PCRs
whole genome
BCP/PC
Pre-S/S

Ultracentrifugation
(10-12 mL plasma)

Pos

Neg
HBV DNA amplification performance

Successful amplification rate (%)

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCP/PC (296 bp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-S/S (1,434 bp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole genome (3,160 bp)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preliminary results

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 13)</td>
<td>(n = 16)</td>
<td>(n = 29)</td>
</tr>
<tr>
<td>Age (y)</td>
<td>34</td>
<td>35.5</td>
<td>34.8</td>
</tr>
<tr>
<td>(mean; range)</td>
<td>(19 – 59)</td>
<td>(18 – 61)</td>
<td>(18 – 61)</td>
</tr>
<tr>
<td>HBsAg (ng/mL)</td>
<td>1,355</td>
<td>2,113</td>
<td>1,881</td>
</tr>
<tr>
<td>(median; range)</td>
<td>(110 – 39,500)</td>
<td>(150 – 19,030)</td>
<td>(110 – 39,500)</td>
</tr>
<tr>
<td>HBV DNA confirmed</td>
<td>12 (92%)</td>
<td>15 (94%)</td>
<td>27 (93%)</td>
</tr>
<tr>
<td>HBV genotypes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>9</td>
<td>9 (35%)</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>-</td>
<td>1 (4%)</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>1</td>
<td>3 (11%)</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>2</td>
<td>9 (35%)</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>3</td>
<td>4 (15%)</td>
</tr>
</tbody>
</table>
Sequences analysis

EcoR1 3222

pol

Pre-S/S G381A

Pre-core/core HBx G2020 T/C x6 C1935G X9 A2978T/C x3

Insert. 2 nt. Delet. 5nt.

Pre-S/S Pre-S1 Pre-S2 x3
Construction of HBV replicons

Method 1

1st PCR amplification with HBV-specific primers

- HBV DNA
- HBV primer 1
- Adapter
- SapI

2nd PCR amplification using adapters

- HBV genome
- Huh7 transfection & re-circularization with SapI

HBV genome expression & replication

Method 2

2 distinct PCR amplifications

- HBV DNA
- HBV primer 1
- Rest. Enz.
- EcoRI
- HBV primer 2

Cloning of 1.2 HBV construct

- HBV primer 3
- HBV primer 4

- Plasmid
- EcoRI

Huh7 transfection

HBV genome expression & replication
Preliminary conclusions & perspectives

● Conclusions:
 - Extremely low level of HBV DNA confirm in >90% of ID-NAT non-reactive blood donations with concomitant high HBsAg levels
 - Phenotype not associated with donor age or HBV genotype
 - Impaired viral replication rather than NAT failure is suggested
 - Mutations potentially affecting viral replication identified

● Perspectives:
 - Increase the number of samples and controls of various genotypes
 - Collaborative study (Croatia, Poland, Switzerland, South Africa, Malaysia,...)
 - Develop an in vitro HBV replication system
 • functional characterization of HBV variants
 • evaluation of infectious risk
 • increase knowledge about distinct molecular control of viral replication & HBsAg production → potential clinical implications
 - Funding

HBsAg ???
Acknowledgements

INTS
DATS/CNR Hépatites en Transfusion
Paris, France
S. Laperche
A. Servant-Delmas
L. Boizeau
C. Leclerc

Inter-regional Blood Transfusion SRC
Berne, Switzerland
C. Niederhauser
P. Gowland

Croatian Institut of Transfusion Medicine
Zagreb, Croatia
M. Miletic Lovric
I. Mihaljevic

Dept. Virology
Institute of Haematology & Transfusion Medicine
Warsaw, Poland
P. Grabarczyk
A. Kopacz

South African NBS
Johannesburg, South Africa
M. Vermeulen
A. Saville

Grifols
Diagnostic Solutions Inc

National Blood Centre
Kuala Lumpur, Malaysia
A. Bon
A. Fread