IMPACT OF LESS STRINGENT DEFERRAL POLICIES FOR MEN HAVING SEX WITH MEN

PREDICTIONS VERSUS REALITY

Marc Germain, M.D., Ph.D.

TTID Working Party
ISBT, London
June 26, 2015
Currently, the most common policy regarding the eligibility of men who had sex (MSM) with men: ‘Permanent deferral’

- e.g. in the US: *Sex with another man, even once, since 1977*
- Other countries with a permanent deferral: Germany, France, Sweden, Hong Kong, China, Egypt, etc.
 (See Benjamin et al., Vox sanguinis 2011)

But the international situation is changing…
Deferral policies for MSM: Inappropriate discrimination or justifiable safeguard?

- No restriction for MSM
- Temporary deferral only if multiple MSM partners, unprotected sex
- Temporary deferral only if unprotected sex with MSM partner
- Temporary deferral if multiple MSM partners, (unprotected sex or not)
- Temporary deferral if MSM behavior (regardless of number of partners; unprotected sex or not)
- Lifetime deferral (regardless of number of partners; unprotected sex or not)

What is the least restrictive deferral policy that could achieve optimal safety?
How can the impact of a less restrictive deferral policy be evaluated?

- Just implement the change and observe?
 Not very appealing from a risk management perspective

- Perform a ‘clinical trial’?
 Feasibility is a major issue

- Model the impact of the change?
 Let’s talk about that…
Who tried what and when…

<table>
<thead>
<tr>
<th>First author</th>
<th>Reference</th>
<th>Year</th>
<th>What was modelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dayton, A</td>
<td>BPAC meeting, FDA</td>
<td>2000</td>
<td>Change from permanent to 5-year deferral</td>
</tr>
<tr>
<td>Germain, M</td>
<td>Transfusion, vol. 43, p. 25</td>
<td>2003</td>
<td>Change from permanent to 1-year deferral</td>
</tr>
<tr>
<td>Soldan, K</td>
<td>Vox Sanguinis, vol. 84, p. 265</td>
<td>2003</td>
<td>Change from permanent to 1-year deferral, Change from permanent to no deferral</td>
</tr>
<tr>
<td>Anderson, SA</td>
<td>Transfusion, vol. 49, p. 1102</td>
<td>2009</td>
<td>Change from permanent to 5-year deferral, Change from permanent to 1-year deferral</td>
</tr>
<tr>
<td>Davison, KL</td>
<td>Vox Sanguinis, vol. 101, p. 291</td>
<td>2011</td>
<td>Change from permanent to 5-year deferral</td>
</tr>
<tr>
<td>Pillonel, J</td>
<td>Vox Sanguinis, vol. 102, p. 13</td>
<td>2012</td>
<td>Change from permanent to no deferral (if only one MSM partner in last 12 months)</td>
</tr>
<tr>
<td>Davison, KL</td>
<td>Vox Sanguinis, vol. 105, p. 85</td>
<td>2013</td>
<td>Change from permanent to 1-year deferral</td>
</tr>
<tr>
<td>Germain, M</td>
<td>Vox Sanguinis, Epub</td>
<td>2013</td>
<td>Change from permanent to 5-year deferral</td>
</tr>
</tbody>
</table>
Common features of most models:

- How many new donors would become eligible and donate under the revised policy?
- How many of these donors would be infected with HIV?
- How many of these infected units would end up being transfused? (because of errors, test failures, etc.)
- What is the uncertainty around these numbers? (sensitivity analysis, Monte Carlo simulation)
- **Note:** Generally, the impact is calculated for the first year post-implementation
MSM RISK MODELS; A SIMPLIFIED VISUAL REPRESENTATION

DONORS (RESTRICTIVE MSM DEFERRAL POLICY)

RECIPIENTS

Transfusion Safety Features

Infected donation
MSM RISK MODELS; A SIMPLIFIED VISUAL REPRESENTATION

DONORS (LIBERAL MSM DEFERRAL POLICY)

- Infected donation
- Infected donation
- Infected donation

RECIPIENTS

Blood Products
Stem Cells
Human Tissues
The number of MSM who would become eligible and decide to donate in a given year (N_{1y}), under a five-year deferral policy, is given by the formula:

$$N_{1y} = \text{MSM}_{\text{tot}} \times P_{\text{elig}} \times P_{\text{don}},$$

where:

- MSM_{tot} is the total number of MSM in the population
- P_{elig} is the proportion of these MSM who would become eligible
- P_{don} is the proportion of those eligible who would donate
The number of HIV-contaminated units that would be made available for transfusion in a given year (U_{1y}), as a result of this five-year deferral policy, is obtained as follows:

$$U_{1y} = N_{1y} \times P_{\text{hiv}} \times (P_{\text{falseneg}} + P_{\text{variant}} + P_{\text{window}} + P_{\text{tech}} + P_{\text{errinv}} + P_{\text{urgent}}),$$

where:

- P_{hiv} is the proportion of newly eligible MSM donors who would be unknowingly seropositive, and...
RISK MODEL; AN EXAMPLE

\[P_{\text{falseneg}} \] is the proportion of screening tests that give a false negative result (analytical sensitivity)

\[P_{\text{variant}} \] is the proportion of donations contaminated with a variant strain of HIV undetectable by current screening tests

\[P_{\text{window}} \] is the proportion of the donations made in the immunosilent phase of infection

\[P_{\text{tech}} \] is the proportion of false-negative screening test results due to system errors (‘clinical’ sensitivity)

\[P_{\text{errinv}} \] is the proportion of the units erroneously placed in inventory

\[P_{\text{urgent}} \] is the proportion units that are released to inventory on an emergency basis, before being tested for communicable diseases
Some differences between models:

- Policy change being considered
 - One-year vs. permanent deferral
 - Five-year vs. permanent deferral
 - Single sexual partner vs. permanent deferral
 - No restriction

- Risk being evaluated: HIV only, other risks

- Effect of policy on overall compliance to screening questionnaire

- Manner in which risk is quantitatively reported
WHAT HAVE THE MODELS PREDICTED?

- Variable but very small additional risk to recipients

- Some examples:
 - Germain et al. (Vox sanguinis, 2013)
 Impact of a five-year deferral policy in Canada: One additional HIV contaminated unit every 6,500 years
 - Anderson et al. (Transfusion, 2009)
 Impact of a one-year deferral policy in the U.S.: One additional HIV contaminated unit every 5 years
Some countries have changed from a permanent to a temporary deferral, e.g. Australia, UK, Canada

What about the impact in terms of actual harm to recipients? (i.e. HIV transmission)
- The ‘predicted’ increase in risk is too small to be detectable, even on a large scale
CAN WE LOOK AT OTHER PREDICTIONS FROM THE MODELS?

DONORS (LIBERAL MSM DEFERRAL POLICY)

RECIPIENTS

Transfusion Safety Features

Infected donation

Infection donation
Table 1 Estimation of additional human immunodeficiency virus (HIV)-infected donations that would be collected (probably during the first year) if active-MSM and MSM-past were accepted as blood donors

<table>
<thead>
<tr>
<th></th>
<th>London</th>
<th>Outside London</th>
<th>England and Wales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male population 16–64 years old</td>
<td>2,637,895</td>
<td>14,834,197</td>
<td></td>
</tr>
<tr>
<td>Donor panel 16–64 years old</td>
<td>94,923</td>
<td>7,671,49</td>
<td></td>
</tr>
<tr>
<td>Percentage of male 16–64 population who are donors</td>
<td>3.6%</td>
<td>5.2%</td>
<td></td>
</tr>
<tr>
<td>Percentage and number of males who are active MSM (i.e. have had sex with men in the past 12 months)</td>
<td>3.6%</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Percentage and number of males who are MSM but who have not had sex in the past year (MSM-past)</td>
<td>4.8%</td>
<td>2.2%</td>
<td></td>
</tr>
<tr>
<td>Prevalence of undiagnosed HIV in active MSM</td>
<td>2.8%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Prevalence of undiagnosed HIV in MSM-past</td>
<td>0.84%</td>
<td>0.07%</td>
<td></td>
</tr>
<tr>
<td>Prevalence of undiagnosed HIV in all MSM</td>
<td>1.67%</td>
<td>0.17%</td>
<td></td>
</tr>
<tr>
<td>Number of undiagnosed HIV-positive active MSM donors, if accepted</td>
<td>96</td>
<td>27</td>
<td>123</td>
</tr>
<tr>
<td>Number of undiagnosed HIV-positive MSM past donors, if accepted</td>
<td>39</td>
<td>11</td>
<td>50</td>
</tr>
</tbody>
</table>
CAN WE ‘VALIDATE’ THESE PREDICTIONS?

- **Yes**, by looking at those countries that went from a permanent to a temporary deferral:
 - Australia (2000) – One-year deferral
 - UK (2011) – One-year deferral
 - Canada (2013) – Five-year deferral

- Calculate the **predicted increase** in the number of HIV-positive male donors following the new deferral policy, according to various models

- Compare these predictions with the **observed increase** in the number HIV-positive male donors following the new deferral policy in these countries
OBSERVED VERSUS PREDICTED HIV-POSITIVE MALE DONORS FOLLOWING IMPLEMENTATION OF A TEMPORARY MSM DEFERRAL

- Annual HIV prevalence data for the countries that changed their deferral policy:
 - Australia (2000) - Seed et al. Transfusion 2010; 50:2722
 - UK (2011) – Katy Davison, personal communication
 - Canada (2013) – Sheila O’Brien, personal communication

- For a given model, apply the parameters to each of the three countries, taking into account the size of the adult male population;
- For each country, calculate the expected number of HIV-positive donors who would be added to the donor pool (first year post-change)

- Pool the data from the three countries
- Compare observed and predicted HIV prevalence in male donors after the policy change
FOR EXAMPLE:
Predictions according to Soldan et al., 2003

<table>
<thead>
<tr>
<th>Parameter</th>
<th>U.K.</th>
<th>Australia</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult male population</td>
<td>17 472 092</td>
<td>7724348</td>
<td>12113000</td>
</tr>
<tr>
<td>Proportion of MSM among adult males</td>
<td>0,037</td>
<td>0,037</td>
<td>0,037</td>
</tr>
<tr>
<td>Number of MSM</td>
<td>651 446</td>
<td>288 002</td>
<td>451 633</td>
</tr>
<tr>
<td>Proportion of recently abstinent MSM</td>
<td>0,69</td>
<td>0,69</td>
<td>0,49</td>
</tr>
<tr>
<td>Number of newly eligible MSM</td>
<td>450 040</td>
<td>198 722</td>
<td>221 300</td>
</tr>
<tr>
<td>Proportion of newly eligible MSM who would donate</td>
<td>0,049</td>
<td>0,049</td>
<td>0,049</td>
</tr>
<tr>
<td>Number of newly eligible MSM who would donate</td>
<td>22 187</td>
<td>9 797</td>
<td>10 910</td>
</tr>
<tr>
<td>Proportion of newly eligible MSM who would be unknowingly infected</td>
<td>0,00225</td>
<td>0,00225</td>
<td>0,001125</td>
</tr>
<tr>
<td>Number of HIV-positive donors who would donate (during first year)</td>
<td>50</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>

TOTAL = 84
OBSERVED VERSUS PREDICTED HIV PREVALENCE AMONG MALE DONORS FOLLOWING NEW MSM DEFERRAL POLICY (UK, CANADA, AUSTRALIA)

![Graph showing observed versus predicted HIV prevalence among male donors following new MSM deferral policy.](image)

- **OBSERVED (n=14)**
- **PREDICTED (n=96)** (Soldan et al., 2003)
- **PREDICTED (n=158)** (Germain et al., 2003 & 2013)
- **PREDICTED (n=30)** (Davison et al., 2011 & 2013)
- **PREDICTED (n=781)** (Anderson et al., 2009)

Number of HIV-positive, male donors

YEAR RELATIVE TO NEW DEFERRAL POLICY
TWO QUESTIONS:

1) Why the discrepancies between the different models?

2) Why the discrepancies between the models and the reality?
Sources of discrepancies between different model predictions:

Proportion of MSM among adult males

- Germain et al.
- Soldan et al.
- Anderson et al.
- Davison et al.

Proportion of unknowingly infected eligible MSM

- Germain et al.
- Soldan et al.
- Anderson et al.
- Davison et al.

Proportion of one-year abstinent MSM

- Germain et al.
- Soldan et al.
- Anderson et al.
- Davison et al.

Proportion who would donate

- Germain et al.
- Soldan et al.
- Anderson et al.
- Davison et al.

Applied only to males 16 to 44 years old
Why didn’t we observe the predicted increase in HIV prevalence?

Some parameters may have been greatly overestimated:

- Proportion of MSM in the population?
- Proportion of MSM who are abstinent?
- Proportion of newly eligible MSM who would be unknowingly infected?
- Proportion of newly eligible MSM who would donate (the first year, anyway)?

My guess
‘Only’ three countries considered
- It still represents a total population of 121 millions

No long term follow-up on all countries
- However, it seems unlikely that it would ‘flare up’ after a lag period
- No such trend observed in Australia (Seed et al., Transfusion 2010)

Larger-than-expected impact of increased compliance following the revised criteria?
- Possible, but no hard evidence; plus it would not explain the very wide gap between the predicted and the observed
Would that be true in other countries?

- It’s hard to argue that it would be very different elsewhere in the developed world.
- Some caution needs to be applied for countries with high HIV prevalence.

What about models that looked at ‘behavior-based’ deferrals (e.g. Pillonel et al. Vox sanguinis 2011)?

- No similar ‘natural experiment’ to validate the model.
- However, countries that use this approach seem to have higher rates of HIV among their donors (Italy, Spain).
Limitations / other considerations

- What about the accuracy of other parameters in those models (test error rates, quarantine release errors, etc.)?
 - A moot point, if there is no increase in the number of prevalent infections!

- What about other infections (HBV, HCV, HTLV, …)
 - It seems very unlikely that it would be a different story.
Models suggest that going from a permanent to a short term deferral for MSM poses very little (virtually undetectable) risk to recipients;

Based on observed HIV prevalence in countries that adopted a temporary deferral, it appears that most models greatly overestimated this (very small) risk;

Based on these considerations, a permanent deferral policy for MSM is hard to defend, at least from the perspective of HIV risk.
THANK YOU!

Questions?