Defining the clinical need for Rare Blood

Vered Yahalom MD
Deputy director & Medical director NBGRL
Magen David Adom – National Blood Services
Israel
Issues Addressed

• Defining

Rare Blood (ISBT WP on Rare Donors):
Frequency is less than 1:1000 population
Antibody against a High Frequency (HF) antigen
Presence of multiple antibodies

How do I recommend establishing the Clinical Need:
When & whom to transfuse
When blood is not available

• Not addressed

Perinatal & Neonatal Transfusion
When and Whom to Transfuse

• **Aim**: Increase oxygen tissue delivery
 Lack of “gold standard” measurement

• **Benefits, adverse effects and risks vs avoiding transfusion.**

• **Guidelines using Hemoglobin (Hb) levels referred as "Hb triggers" / "Hb thresholds".**

• **Clinical factors:**
 - Symptoms related to anemia
 - Hemodynamic stability
 - Co morbidities

• **Patients' beliefs and expectations**

• **Blood availability**

• **Other medico legal, social and cultural aspects**

• **CLINICAL DECISION**
RBC Indicated Immediately

- Unstable bleeding patient
 Trauma, Obstetrics, GI bleeding, Surgery

- Symptomatic anemic patient
 Various medical & surgical conditions

- Exchange Transfusion
 Symptomatic patient (SCD)

- Intra uterine Transfusion
 Fetal anemia, hydrops
RBC Needed

- Stable patient
 - Bleeding
 - Anemia: variable levels & symptoms underlying medical & surgical conditions
 - Adverse effects prevention protocols (SCD)
- Elective surgery
- Vaginal or Cesarean section delivery
- Diagnostic procedure
- Other
Clinical Practice Guideline on RBC Transfusion

- Hg < 7 g/dL
 - Adult & pediatric hemodynamically stable ICU
 - Adult acute upper GI bleeding*
 - excluding massive bleeding

- Hg < 8 g/dL
 - Symptomatic (chest pain, orthostatic hypotension, fluid unresponsive tachycardia, CHF), post operative, preexisting cardiovascular disease (CVD)

- ? hemodynamically stable pt’s acute coronary syndrome

Less is More?

• Assumptions and transfusion practices challenged.
• Hemovigilance systems– adverse effects.
• Randomized controlled trials (RCT) Hgb triggers in different clinical scenarios.

• Is less blood more beneficial?

• HOT TOPIC – Blood management
Less is More?

- Anemia in acute myocardial infarction (MI) associated with worse prognosis.
- Meta analysis 10 studies (1 small RCT) 203,665 Patients (Pts), in anemic pt’s with MI.
- Increased all-cause mortality associated with blood Tx vs no blood Tx during MI (18.2% vs 10.2%) (risk ratio, 2.91)
- Weighted absolute risk increase - 12%.
- Multivariate meta regression - blood Tx associated with higher risk for mortality independent:
 Hgb - Baseline, nadir, during the hospital stay.
- Blood Tx significantly associated with a higher risk for subsequent MI (risk ratio, 2.04).

Less is More?

- **Clinical Question**: Is a lower (7-10 g/dL) vs higher hemoglobin threshold best for minimizing RBC use and adverse clinical outcomes in anemic patients in critical care and acute care settings?

- 19 RCT, including 6264 patients

- **Bottom Line**: Compared with higher hemoglobin thresholds, a hemoglobin threshold of 7 or 8 g/dL is associated with fewer RBC’s transfused without adverse associations: mortality, cardiac morbidity, functional recovery, or length of hospital stay. No differences in all-cause mortality at 14 /60-day FU or in intensive care unit (ICU) mortality.

Carson JL, Carless PA,. He bert PC: JAMA, 2013 (309) 1; 83-84
FOCUS Trial

• 2016 pt’s >50 years (mean 81), history of or risk factors for cardiovascular disease undergoing hip surgery

• Liberal Tx – Hgb < 10 g/dL

• Restrictive Tx - symptoms of anemia, or physician discretion Hgb < 8 g/dL).

• Primary outcome: No difference in death or an inability to walk at 60-day follow-up.

• Secondary outcomes: No difference in hospital MI, death rates at 60 days, other complications.

• Reasonable: withhold transfusion in pt’s undergone surgery
 Absence of symptoms of anemia, Hgb <8 g/dL,
 Elderly underlying cardiovascular disease or risk factors

Transfusion Support and Rare Blood

- Rare RBC’s supplied by Rare Donor Programs (RDP): fresh or frozen units
- Family members - major resource
- Scarce publications on the transfusion support of patients with antibodies to high frequency (HF) RBC antigens

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004 (8 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requests completely filled by phone/fax</td>
<td>510 (88%)</td>
<td>574 (86%)</td>
<td>369 (84%)</td>
</tr>
<tr>
<td>Requests completely or partially unfilled</td>
<td>70 (12%)</td>
<td>96 (14%)</td>
<td>72 (16%)</td>
</tr>
</tbody>
</table>

Rare Blood is not Always Available

Table 3. Completely or partially unfilled requests by phenotype

<table>
<thead>
<tr>
<th>Requests</th>
<th>2002</th>
<th>2003</th>
<th>2004 (8 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total requests completely or partially unfilled</td>
<td>70</td>
<td>96</td>
<td>72</td>
</tr>
<tr>
<td>U-*</td>
<td>14 (20%)</td>
<td>20 (21%)</td>
<td>12 (17%)</td>
</tr>
<tr>
<td>hr<s/>hr*</td>
<td>7 (10%)</td>
<td>13 (14%)</td>
<td>8 (11%)</td>
</tr>
<tr>
<td>Di(b−)*</td>
<td>3 (4%)</td>
<td>13 (14%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td>Vel−*</td>
<td>5 (7%)</td>
<td>3 (3%)</td>
<td>3 (4%)</td>
</tr>
<tr>
<td>Kp(b−)*</td>
<td>4 (6%)</td>
<td>2 (2%)</td>
<td>2 (3%)</td>
</tr>
<tr>
<td>Js(b−)*</td>
<td>0</td>
<td>3 (3%)</td>
<td>5 (7%)</td>
</tr>
<tr>
<td>Yt(a−)*</td>
<td>4 (6%)</td>
<td>1 (1%)</td>
<td>2 (3%)</td>
</tr>
</tbody>
</table>

*Antigen alone or in combination with other common antigens

Flickinger C, Petrone T, Church A: Review: American Rare Donor Program *Immunohematology* 2004; **20** (4):239-244.
Antibodies to HF Antigens may Decrease the Quality of Transfusion Support

- Retrospective analysis - 52 hospitalized pt’s with antibodies to HF antigens.
- Admitted 5.2000 -12. 2001, Germany, Austria & Switzerland.
- 133 compatible RBCs supplied for 26 pt’s.
- 104 antigen negative RBCs transfused to 22 pt’s.
- Deviation from the standard transfusion policy occurred in 23/56 (41%).

Antibodies to HF Antigens May Decrease the Quality of Transfusion Support

TABLE 1. Deviations from standard transfusion policy in patients with antibodies to high-frequency antigens

<table>
<thead>
<tr>
<th>Type of deviation from protocol</th>
<th>Germany</th>
<th>Switzerland</th>
<th>Austria</th>
<th>Total</th>
<th>Antibodies involved*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No compatible blood as backup†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgery</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>anti-Kp(^b) (n = 2), anti-Yt(^a) (n = 2) anti-Lu(^b), anti-AnWj</td>
</tr>
<tr>
<td>Diagnostic procedure</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>anti-LW(^a), anti-Fy3</td>
</tr>
<tr>
<td>Vaginal delivery</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>anti-Kp(^b), anti-Vel</td>
</tr>
<tr>
<td>Transfusion of antigen-positive units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency transfusion‡</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>anti-Vel (n = 2), anti-Lu(^b)</td>
</tr>
<tr>
<td>Elective transfusion</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>anti-Yt(^a) (n = 3), anti-Kp(^b), anti-Lu(^b)</td>
</tr>
<tr>
<td>Transfusions cancelled or limited</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>anti-Vel (n = 2), anti-Co(^a) (n = 2)</td>
</tr>
<tr>
<td>Diagnostic procedure cancelled</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>anti-Lu8</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>3</td>
<td>2</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

* n = 1 unless otherwise indicated.
† No transfusions performed.
‡ Lack of time to obtain compatible units made deviation inevitable.

Antibodies to HF antigens may decrease the quality of transfusion support

- 8 episodes of antigen-incompatible transfusion. 5/8 delayed Hemolytic Transfusion Reaction (DHTR) all recovered with no negative effect 2nd hemolysis.

- Transfusion support unsatisfactory ~ 1/3 hospitalized pt’s with antibodies to HF antigens.

- Maintaining a rapidly accessible stock of four types rare blood units would ensure adequate transfusion support for most of these patients.

Rare yet Different

• HF antibodies different clinical significance (anti-PP1Pk vs. anti-Lub)
 Test antibody subtype and titer.

• Previous transfusion history, pregnancies.

• Clinical significance is variable/unknown
 \textbf{In vitro}: Monocyte Monolayer Assay (MMA)
 (> 5% capable of shortening RBC survival)
 Chemiluminesence (CLT) opsonic index- (> 1.6)

 \textbf{In vivo}: Cr51 or In111 survival
 * Results may be discordant.

• “Biological cross match”
Massive Postpartum Transfusion of Jr(a+) RBC’s in the Presence of anti-Jra.

- 31 year old woman, anti-Jra
- Life-threatening postpartum disseminated intravascular coagulopathy (DIC)
- Emergency Tx - 15 units Jra untested RBCs
- No clinical or laboratory evidence of acute hemolysis
- Pretransfusion anti-Jra : Titer 1:4
 MMA reactivity 68.5%
- Day 10 post Tx: anti-Jra : Titer 1:64
 MMA reactivity 72.5%
 Laboratory evidence Mild DHTR

Management of Emergency Cardiac Surgery in a Patient with alloanti-Ge2.

- Untransfused 75-year-old man (blood group O) anti–Ge2 required emergency cardiac surgery.
- Cross-match compatible blood was not available.
- A 'biological cross-match' sequential transfusion of 20, 50 mL, entire unit of incompatible RBCs before surgery.
- No clinical adverse effects observed.
- Two incompatible RBCs transfused during surgery.
- No clinical & laboratory evidence of major intra- or extravascular haemolysis.
- Particular anti-Ge2 was not clinically significant.

Anti- \(Yt^a \)

- Variable clinical significance.
- Most frequent HF antibody seen in Israel.
- Liquid units often available & frozen inventory.
- \(Yt(a-) \) units supplied if antibody subtype IgG1/3, high titer, increase in titer, physician demand.
- Patients transfused with \(Yt(a+) \) RBC’s acute bleeding, surgical procedures.
Antibody Characteristics Change

- Patient with anti-Kpb(1)
 - CLT opsonic index 0.8 (normal up to 1.6)
 - Elective procedure, 1 incompatible RBC’s
 - 14 days post transfusion – CLT opsonic index 1.1
 - 51Cr survival 24.3% 60 minutes, 2% 24 hours.

- Patients with anti-Yta(2) & our unpublished data
 - Antibody characteristics may change
 - Not necessarily in parallel with Ab Titer.

- No predictors for change in clinical significance.

Liver Transplantation & “Regular” Alloantibodies

• 13.7% of adults, 6.3% of children had significant RBC alloantibodies.

• 17 pt’s had 28 significant RBC antibodies:
 15 Rh, 8 Kell, 3 Kidd (Jk), 2 Duffy (Fy).

• Received ≥8 units of antigen-negative RBCs before untyped incompatible blood given for massive bleeding.

• Of 7 patients received >2 incompatible units – Hemolysis occurred in 2 (1 with underlying PNH).

• Switch to compatible blood performed once bleeding has stopped. ? WHEN TO SWITCH

When Blood is (not) Available

- **Pharmacological:**
 - Crystalloid infusions
 - Iron supplementation
 - Erythropoiesis stimulating agents
 - Antifibrinolytics (Tranexamic acid, Aminocaproic acid)
 - rFVIIa

- **Surgical:**
 - Minimize iatrogenic blood loss
 - Normovolemic hemodilution
 - Intraoperative blood salvage
 - Careful surgical hemostasis
 - Fibrin glues & hemostatic bandages

- **Investigational – not routinely available:**
 - Perfluorocarbon
 - Polymerized hemoglobin solutions
Personalized Blood Management: Patients with Antibodies to HF Antigens

• Balance the risks of withholding transfusion with the anticipated chance of significant hemolysis after transfusion of incompatible RBCs.

• Need for close communication & cooperation between transfusion services, clinicians, and patients.

• Different medico legal, public & cultural aspects.

• Hgb < 8 g/Dl
 Unstable, symptomatic.

• Hgb < 6 - 7 g/dL
 Hemodynamically stable, asymptomatic, no comorbidities.

• Integrative clinical decision
Hope for the Future

• **Ex vivo expansion of RBC’s**
 - Peripheral blood
 - Cord blood
 - Induced pluripotent stem cells
 - Human embryonic stem cell lines

• **Alternative transfusion products** could become a significant source for maintaining and supporting individuals with rare blood & alloimmunized patients.
Summary

• Scarce documented data on transfusion support of pt’s with antibodies to HF antigens.

• Less (blood) is often more.

• Same antibodies – Different outcome

• No easily accessible & reliable diagnostic aid for clinical significance of antibodies to RBC.

• ESSENTIAL: Communication & Clinical judgment Personalized blood management

• Need for data: Outcome of transfusion of incompatible RBC’s in Pt’s with rare blood types and antibodies.

* ISBT W/P Rare Donors centralized web database
Acknowledgements

Eilat Shinar
Cyril Levene
Orna Asher
NBGRL team

Noga Manny
Martin Ellis
Orly Zelig

Members ISBT WP Rare Donors
Sandra Nance
Yoshiko Tani
Eduardo Muniz Diaz

IBGRL
Joyce Poole
Nicole Thornton

NHS
Theresse Callaghan
Alan Grey
Wallis Kevin
Dominic Conneally

Thank you for your attention