

Syria LAPERCHE, MD, PhD

Centre National de Référence des Hépatites B et C et du VIH en Transfusion Institut National de la Transfusion Sanguine, Paris, France

ISBT IDTT WP
Cairo 22 March 2009

Background

HCV Ag/Ab combos (or HCV Ag assays) an alternative for ensuring the blood safety in countries where HCV NAT cannot be introduced:

40 to 50% of HCV-RNA pos /HCV Ab neg samples, positive with HCV combos assays

Laperche S, et al J. Clin Microbiol 2005

Laperche S, et al Transfusion 2005

Dean L, UK Health Protection Agency, Feb 2007

Tuke et al. Transfusion 2008

- The cut off viremia level detected by combo assays in the window phase is unclear
- Many studies have been done in genotype 1a SC panels from the US

Objectives

Through an international collaboration

Part 1:

Establish the differences in the sensitivity between

HCV combo assays

HCV antigen assays

NAT blood screening systems

in the detection of viremia during the WP according to the genotype and the VL by testing random subsets of the observed HCV NAT yield cases from different regions of the world.

Part 2:

Evaluate the analytical sensitivity of HCV combo assays and NAT systems in dilutions of high viral load HCV NAT WP samples of genotypes: 1a, 1b, 2a, 2b, 3a and 4.

Participating laboratories

Dr E. Brojer, Dr P. Grabarczyk

Institute of Haematology and Transfusion Medicine, Warsaw, Poland

Dr El Elyabi, Dr F.Moftah

Shabrawishi Hospital, Finni Square, Dokki, Cairo, Egypt

Dr V. Kalibatas

Nacionalinis Kraujo Centras, Lithuania

M. Nubling

PEI, Langen, Germany

Dr. S. Stramer

ARC, USA

Dr J Tanaka, Pr H. Yoshizawa Hiroshima University, Hiroshima, Japan

H van Drimmelen

Delft Diagnostic Laboratory, Voorburg, the Netherlands

Pr MP Busch, Scientific Adviser Blood Systems Research Institute, San Francisco, CA, USA

Dr Syria Laperche, NCR, INTS, coordination

Part 1: Detection of early infection

Samples: HCV NAT yield donations

Minimum 2ml with known genotype and determined VL

Country	N samples	Genotypes
Egypt	17	1,3,4
France	5	1,3,4
Germany	26	1,2,3,5
Japan	35	1,2
Lithuania	19	1,3
Poland	70	1,3,4
USA	166	1, 2, 3, 4
TOTAL	338	

Part 1: Detection of early infection Assays

- HCV Combos (INTS)
 - Monolisa HCV Ag/Ab Ultra (BioRad)
 - Murex HCV Ag/Ab Combination (Abbott)
- HCV Ag (PEI)
 - Architect HCV Ag (Abbott)

Part 1: Detection of early infection Method

HCV Combos (INTS)

- Monolisa HCV Ag/Ab Ultra (BioRad)
- Murex HCV Ag/Ab Combination (Abbott)

		Combo 2	Single	testing
	Result	Neg	0.9<5/CO <2	>or = 2
Combo 1	Neg	NEGATIVE	Testing in duplicate	Testing in duplicate
Single testing	0.9<5/CO <2	Testing in duplicate	Testing in duplicate	Testing in duplicate
	>or =2	Testing in duplicate	Testing in duplicate	POSITIVE

S/CO Mean value

Part 2: Analytical sensitivity

Samples

Dilution panel (DDL)

Samples used for preparation of HCV dilution panels:

Panel number	origin	gen	IU/ml	Panel 1:
P01	Egypt	1a	6,26E+05	half log dilutions from 3×10^7 to $3 \times 10^5 \text{IU/ml}$
P02	Egypt	1a	1,17E+06	Haif log anations from exto 10 oxio 207 mi
P03	Japan	1b	6,90E+07	
P04	Japan	1b	2,90E+07	
P05	Japan	2a	1,70E+07	Panel 2:
P06	Japan	2a	4,90E+07	half log dilutions from 1x10 ⁵ to 3x10 ³ IU/ml
P07	Japan	2b	7,40E+06	
P08	Japan	2b	1,60E+06	
P09	Lithuania	За	3,00E+06	Panel 3:
P10	Lithuania	За	2,00E+07	half log dilutions from 1x10 ³ to 10 ⁻¹ IU/ml
P11	Egypt	4	1,08E+06	

HCV RNA WHO, Eurohep and Hiroshima chimpanzee infectivity standards

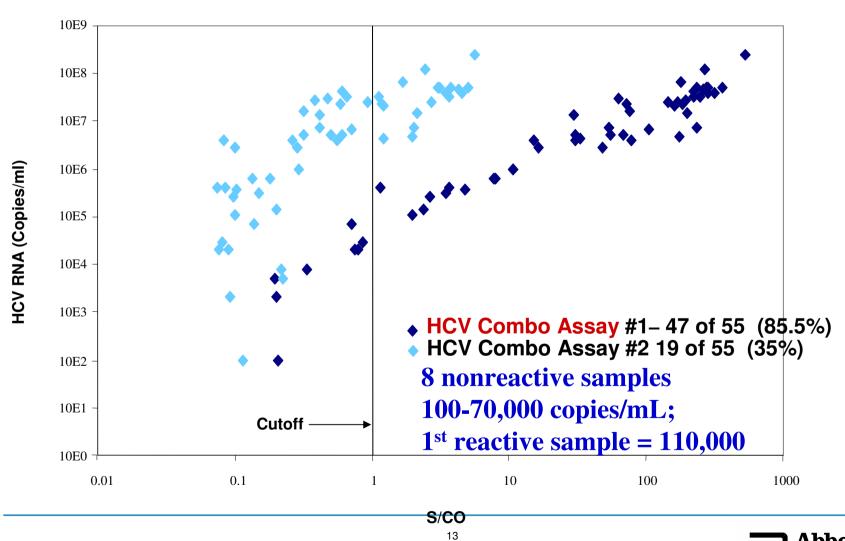
Part 2: Analytical sensitivity Method (1)

- Panel 1 in duplicate
 - Monolisa HCV Ag/Ab Ultra (BioRad) (INTS)
 - Murex HCV Ag/Ab Combination (Abbott) (INTS)
 - Architect HCV Ag (Abbott) (PEI)
- Cut off level of combos for each genotype
- Panel 2 + standards in duplicate
 - Combos (INTS)
 - Architect HCV Ag if the last dilution sample of panel 1 positive (PEI)
 - bDNA (Berkeley, USA)
 - Cobas Taq Man (Roche Molecular Systems) (INTS)
 - > Cut off level of combos for each genotype cross VL calibration
- Panel 3 + reference standards in 12 replicates
 - Procleix Ultrio on Tigris IDT (Poland)
 - Taq Screen MPX on S201 system IDT (PEI)
 - Cut off level of NAT for each genotype

Part 2: Analytical sensitivity Method (2)

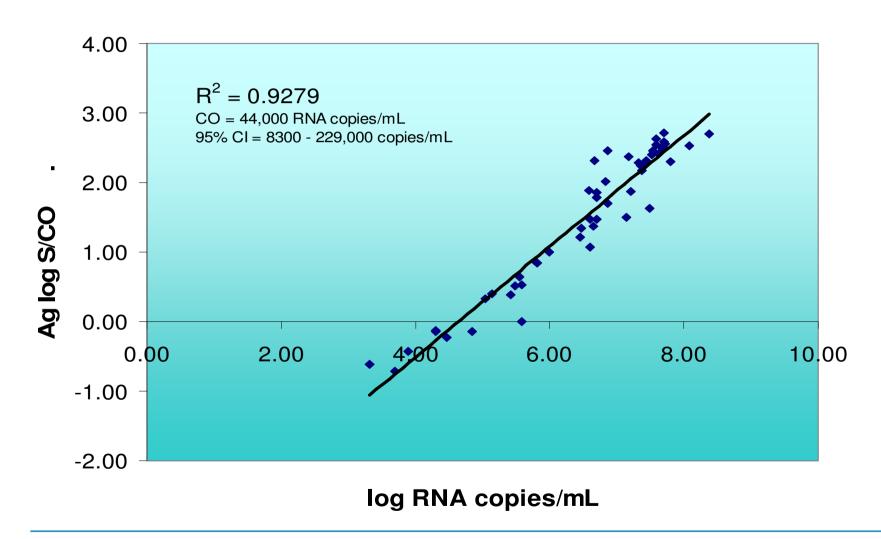
- ◆ The cut off crossing point of combo ELISA expressed as IU/ml or copies/ml will be determined by regression analysis after logit log transformation of the response curves. The cut off will be compared with the 95% and 50% detection limits found with NAT screening systems and will be expressed in IUs and copies/ml according to calibration in the bDNA 3.0 assays as the reference method and the Roche TaqMan assay for comparison.
- ◆ Assuming that for each genotype the viral doubling time of HCV is comparable (0.45 days) the time difference between the 50% hit rate seroconversion point for Ultrio ID, Ultrio MP-NAT (1:8) and TaqScreen MP-NAT (1:6), the HCV Ag and combo ELISA cut off crossing points will be extrapolated for each genotype from the results of the dilution panels.

Preliminary results


Country	N	Monolisa screening * N positive
Egypt	17	6 (35.3%)
France	5	1 (20%)
Germany	26	12 (46%)
Japan	35	22 (63%)
Lithuania	19	3 (15.8%)
Poland	70	19 (27.1%)
USA	166	67 (40.4%)
TOTAL	338	130 (38.5%)

^{*} Including grey zone (0.9-1), to be confirmed by repeat testing for some samples

ARC Study (2006) of Monolisa HCV Ag/Ab Ultra (BioRad)


HCV Sample	No. Reactive		Viral Loads (Copies/mL)
Type	1.0 cutoff	0.5 cutoff	(sopies, ins)
17 RNA +/Ab -	7 (41%)*	8 (47%)*	Rx = 4.3-50x10 ⁶ +/- = 640,000 NonRx = 18,000- 333,000 (1 @ 2.5x10 ⁶)
50 RNA +/Ab +	50	50	>10^6
20 RNA -/Ab -	O	O	NA

Evaluation of HCV NAT Positive/Anti-HCV Antibody Negative Samples - samples identified by MP-NAT in blood donors from U.S.

Research HCV Combo Assay

Correlation with HCV RNA titer

Perspectives

1. Include additional samples to constitute an international panel of HCV NAT Yield samples

2. Establish cost effectiveness ratio of each method

3. Extend the study to HIV NAT yield samples

Sponsorship

- Abbott providing
 Murex HCV Ag/ Ab Combination and Architect Ag assays.
- Biorad providing
 Monolisa HCV combo Ag/Ab Ultra assays
- CHIRON-Novartis providing
 Ultrio and Procleix assays
 a grant to INTS for the study
 a support for the preparation and shipment of samples