The high frequency antigen KANNO is located on prion protein, encoded by the *PRNP* gene, as a new blood group system

Kenichi Ogasawara

Characteristics of anti-KANNO

• First example of anti-KANNO was reported in 1991

• First case of non-Japanese individual with anti-KANNO was reported in 2018 (Jones et al. ISBT Toronto)

Characteristics of anti-KANNO

- Against unknown HFA (reactive with K_o, Jr(a-), Rh_{null}...)
- Like a HTLA antibody
- Mainly detected in female with pregnancy history
- Clinical significance of anti-KANNO is unknown
 Incompatible transfusion: 7cases

Pregnant women: 15 cases

No cases showed HTR or HDFN

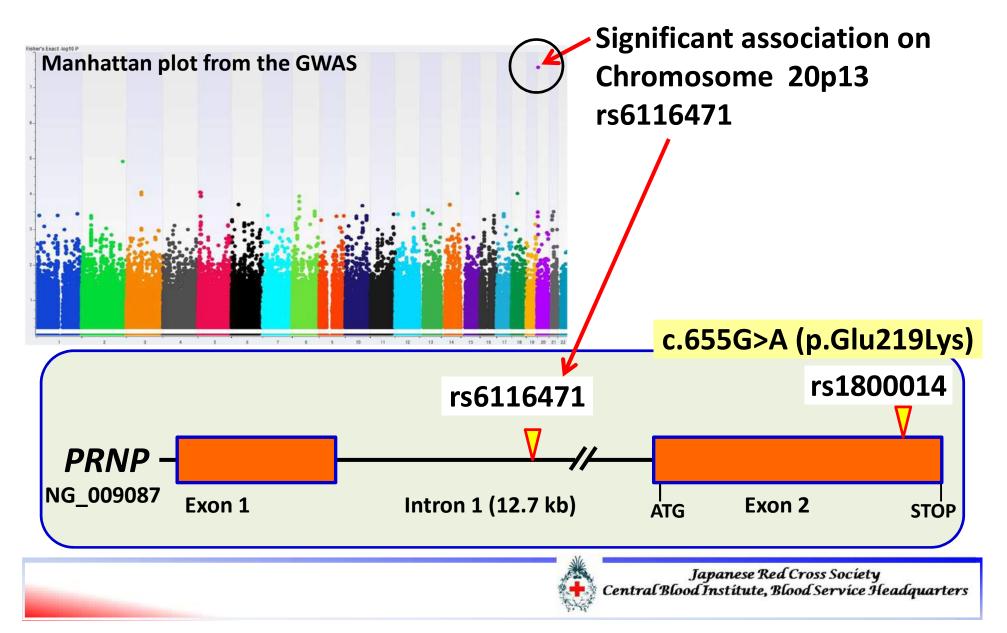
(Kawabata et al. Transfus Med Rev 2014; 28: 23-8)

Characteristics of KANNO antigen

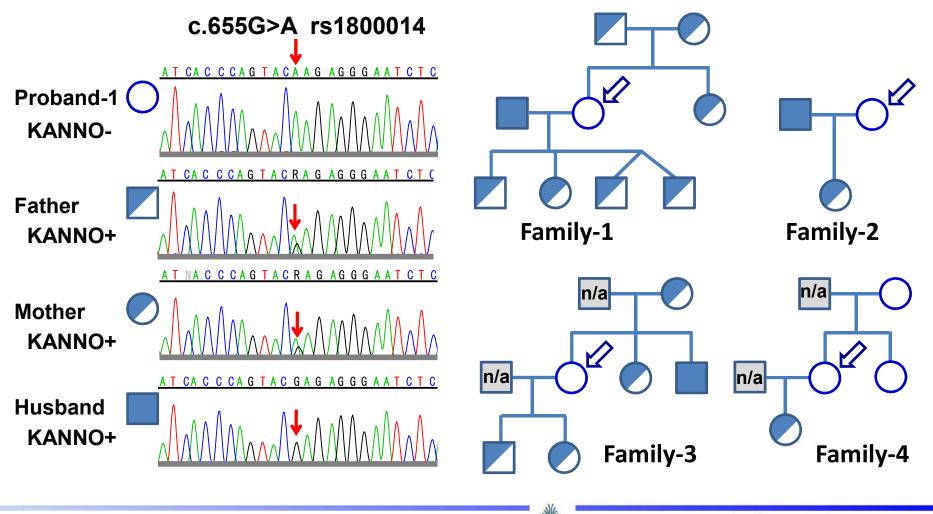
- Sensitive to proteases Ficin, Trypsin,
 α-Chymotrypsin...
- Resistant to disulphide bond reducing agents AET and DTT
- KANNO- frequency is 0.44% (10 in 2,260)

What is the carrier molecule?

- IP, blotting, and MAIEA assays were failed...
- Genome-based approaches to identify the causal gene of KANNO antigen (Omae et al. Transfusion 2019)


Genome-Wide Human SNP array 6.0 (Affymetrix) Genome-Wide Association Study (GWAS)

4 KANNO- individuals vs. 415 healthy Japanese


Whole-Exome Sequencing (WES) Sanger Sequencing

What is the carrier molecule?

PRNP genotype of the 4 probands and their family members

Monoclonal antibody-specific immobilization of erythrocyte antigen (MAIEA) assay

- KANNO antigen is on the prion protein
- Confirmed by transfection and expression study using CHO-K1

The *PRNP**655A frequencies in the ExAC databese and in the Tohoku region

GG GA AA	Population	Allele Frequency (c.655G>A, rs1800014)
	South Asian	4.11% (677 in 16,472)
	East Asian	4.03% (348 in 8,642)
	Latino	0.19% (22 in 11,560)
	African	0.03% (3 in 10,374)
	European	0.004% (3 in 66,660)
	Tohoku (Japan)	5.80% (58 in 1,000)

Correlation between KANNO phenotype and PRNP genotype

	Agglutination	Number of	c.655 genotype					
Phenotype	strength	samples*	GG	GA	AA			
KANNO+	(2+-3+)	100	89	11	0			
	(w+)	12	1	11	0			
KANNO-	(0)	10	0	0	10			
*Obtained from blood donors living in the Kanto-Koshinetsu region								
Japanese Red Cross Society Central Blood Institute, Blood Service Headquarters								

Summary

- Anti-KANNO may be stimulated by pregnancy or by transfusion
- Anti-KANNO appears to be clinically insignificant
- HFA KANNO is located on prion protein encoded by the *PRNP* gene
- Recessive inheritance of KANNO- is caused by the PRNP*655A with c.655G>A (p.Glu219Lys) mutation
- The *PRNP*655A* allele is more frequent in Asians than in other populations

Thank you for your attention!

Yusuke Omae Katsushi Tokunaga

Mayumi Takeuchi Kinuyo Kawabata Ikuo Wada Hitoshi Ohto

Shoichi Ito

Kazumi Isa Kenichi Ogasawara Akira Oda Sayaka Kaito Hatsue Tsuneyama Makoto Uchikawa