

Immunohematology Case Studies 2016 - October Where Are My Antibodies?

Dr. Fang-Yeh, Chu

Director, Department of Clinical Pathology & Quality Management Center, Far Eastern Memorial Hospital Email: jacphajacpha@yahoo.com.tw

Clinical History - 1

- This 63-y-o male patient presenting with low back pain and swelling pain of both legs for about 2 months came to our ER for assessment. He had undergone operation for thymoma 8 years ago
- Physical examination revealed a body temperature of 38.7 Celsius degree, and redness, swelling, and tenderness of both lower legs (R't > L't). Otherwise was unremarkable

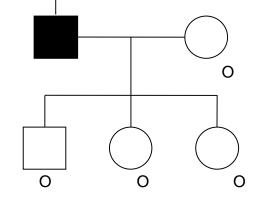
Clinical History - 2

- Complete blood count analysis revealed leukocytosis (WBC 13,420/uL) and microcytic anemia (Hb 8.3 g/dL, MCV 76.1 fL)
- Antimicrobial treatment with Oxacillin was given
- Blood transfusion was suggested as hemoglobin level dropped to 7.6 g/dL

Laboratory Data

Test	April 27	May 02	May 06	May 09	Reference Range	Unit
WBC	13.42	10.63	9.27	9.83	3.8~10.4	$10^3/\mu l$
RBC	3.35	3.1	4.16	4.19	4.1~5.90	10 ⁶ /μl
HGB	8.3	7.6	10.2	10.5	13~17	g/dl

Serologic History


ABO Discrepancy

Anti-A	Anti-B	Anti-D	A1 cells	B cells	Sc	Ab reeni	ng
					I	II	III
_		4+			_		

Ensured reagent/equipment QC, and rechecked the patient's sample again

 Underwent operation for thymoma and received 2U O-type packed red cells transfusion

BMT: Denied

The causes of ABO Discrepancy

(weakly reacting or missing antigen in forward grouping)

	Causes	Verification
1	Subgroups of A or B	Excluded
2	Leukemia	Not present
3	ABO incompatible HPC transplantation	Not present
4	Neutralization of anti-A and anti-B typing reagent by high concentration of A or B soluble substances in serum with serum or plasma suspended red cell	Rechecked after saline washing of red cells

Anti-H	Anti- A,B	Anti-A1	A2 cells	Ads	orption a Elution	and
				AAg	BAg	H Ag
4+	_	_		_	_	+

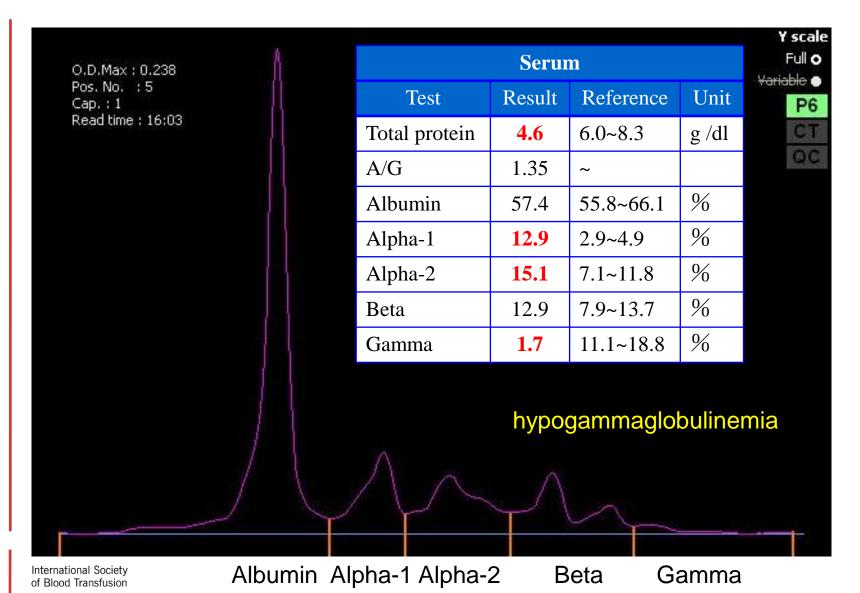
The causes of ABO Discrepancy

(weakly reacting or missing antibodies in reverse grouping)

	Causes	Verification
1	Infants less than 4-6 month of age or elderly?	63 years old
2	ABO incompatible HPC transplantation	Not present
3	Severe hypogammaglobulinemia	?
4	Hematopoietic Chimerism	?

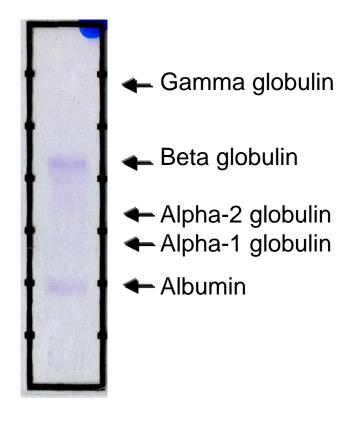
Further Work

Test	05-06	06-09	Reference	Unit
Creatinine	1.05	1.18	0.7~1.20	mg/dl
eGFR	>60	>60	>60	
Test	05-06	06-18	Ref.	Unit
Total Protein	4.4	5.72	6.6~8.7	g/dl
Albumin	3.1	4.33	3.5~5.0	g/dl
Globulin	1.3	1.4	2.1~3.5	g/dl


Further Work (Immunoglobulin)

Test	May-06	June-18	Reference	Unit
IgA	<24.5	<24.5	70~400	mg/dl
IgG	< 6.5	13.7	700~1600	mg/dl
IgM	<15.6	<15.6	40~230	mg/dl
IgE	<4.1	<4.1	0~200	IU/ml
C3	139	140	90~180	mg/dl
C4	38.1	37.5	10~40	mg/dl

Further Work (Serum Protein Electrophoresis)



Further Work (Urine Protein Electrophoresis)

U	rine	
Test	Result	Unit
Total protein	8	g /dl
A/G	0.3	
Albumin	22.7	%
Alpha-1	10.3	%
Alpha-2	22.6	%
Beta	37.2	%
Gamma	7.2	%

Physiological proteinuria pattern

Hypogammaglobulinemia

DISORDER	TOTAL IgG	IgA	IgM	IgG SUBCLASS
Common variable mmune deficiency	Low	Variable	Variable	Low
Selective IgA deficiency	Normal	Low	Normal	Variable ³
lgG subclass deficiency	Normal	Normal	Normal	Low*
Selective antibody deficiency	Normal	Normal	Normal	Variable
Secondary hypogammaglobulinemia	Low	Variable	Variable	Low

Rose ME, Lang DM. Evaluating and managing hypogammaglobulinemia. Cleve Clin J Med 2006; 73:40,43-4,133-7. 7028

Common Variable Immunodeficiency (CVID)

- A heterogeneous immune disorder, is characterized by frequent and recurrent infections and decreased concentrations of multiple classes of immunoglobulins
 - Normal numbers of B lymphocytes
 - Fail to differentiate into antibody-secreting plasma cells.
 - May have increased apoptosis of helper T cells and decreased T-cell function and signaling
- The estimated prevalence of CVID is 1 in 20,000 to 100,000.
 More often presents in adults
- Treatment with high doses of intravenous immunoglobulins (IVIG) leads to improved outcomes

Secondary Hypogammaglobulinemia

- Diseases of immunoglobulin loss
 - Protein-losing enteropathies
 - Chronic renal disorders
- Diseases of immunoglobulin production
 - A number of malignancies, including chronic lymphocytic leukemia (CLL), lymphoma, and multiple myeloma, are associated with secondary hypogammaglobulinemia
- Drug induced states
 - Disease-modifying antirheumatic drugs, Systemic steroids,
 Phenytoin, Carbamazepine, Androgen replacement therapy
- High-stress states
 - Extreme physical activity
 - Low calorie intake
 - Sleep deprivation

Reference Review (Good's Syndrome)

- The presence of thymoma with hypogammaglobulinemia confirmed the diagnosis of Good's syndrome
- Good's syndrome is rare and comprises less than 5% of thymoma patients
- This case had a history of thymoma with surgery 8 years ago

Ling-Ping Chen, Jui-Shan Tsai, Wei-Ming Lai, et al. Myelodysplasia followed by Good's Syndrome: A unique manifestation associated with thyomoma. Journal of Medical Sciences 2014:28(4):236-40

Hematopoietic Chimerism

Definition:

The persisting presence of allogeneic donor blood cells in a recipient

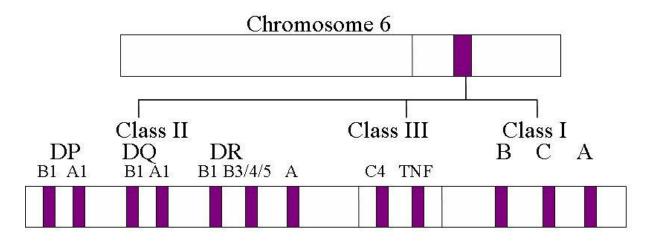
Classification:

- Macrochimerism: The goal of hematopoietic peripheral blood progenitor cell transplantation
- Microchimerism (less than 1-5% donor cells):
 Organ transplantation, Pregnancy, Transfusion

Detection (real-time PCR):

- Screening of all non-HLA-identical donor-recipient combinations for the presence of disparate HLA antigens
- Screening for insertion/deletion polymorphisms (markers)
 - Bob a. van Dijk, Dorre I. Boomsma, and Achile J.M. de Man. Blood Group Chimerism in Human Multiple Births Is Not Rare. Am J Med Genet. 1996 Jan 22;61(3):264-8.
 - Fast L. Microchimerism: a lasting legacy of transfusion? Transfusion 2006;46:1856-8.
 - Lee T, Paglieroni T, Ohto H, et al. Survivial of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term chimerism in severe trauma patients. BLOOD 1999;93:3127-39

Microchimerism (Blood Transfusion)


- The factors that may be associated with establishment of chimerism are storage time of blood units of less than 14 days and administration of the transfusion within 48 hours of a major physiologic insult
- After transfusion in trauma patients is that the patient's response to the trauma facilitates the establishment of chimerism
- The degree of HLA disparity between donor(s) and recipient.
 The data indicate that chimeric cells often express one or two disparate HLA-DR antigens, which would mean that chimeric cells would often be haploidentical at the DR locus

Fast L. Microchimerism: a lasting legacy of transfusion? Transfusion 2006;46:1856-8.

Lee T, Paglieroni T, Ohto H, et al. Survivial of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term chimerism in severe trauma patients. BLOOD 1999;93:3127-39

Further Testing

HLA:

A2 A24

B38 B54

Bw4 Bw6

Cw1 Cw7

DR4 DR9

DQ8 DQ9

Conclusions

- The most probable explanation for the ABO discrepancy was hypogammaglobulinemia, according to the previous investigation
- Type O blood component is recommended if the patient needs transfusion

Lessons Learned by the Case

- Diminished titer of expected ABO blood group antibodies was not uncommon
- Stepwise serological investigation incorporating pertinent medical history could not be overemphasized

References

- Bob a. van Dijk, Dorre I. Boomsma, and Achile J.M. de Man. Blood Group Chimerism in Human Multiple Births Is Not Rare. Am J Med Genet. 1996 Jan 22;61(3):264-8.
- Didier Le Carrer, Jose Boucraut. URINE PROTEIN ELECTROPHORESIS & IMMUNOFIXATION.1999
- Fast L. Microchimerism: a lasting legacy of transfusion? Transfusion 2006;46:1856-8.
- Lee T, Paglieroni T, Ohto H, et al. Survivial of donor leukocyte subpopulations in immunocompetent transfusion recipients: frequent long-term chimerism in severe trauma patients. BLOOD 1999;93:3127-39
- Ling-Ping Chen, Jui-Shan Tsai, Wei-Ming Lai, et al. Myelodysplasia followed by Good's Syndrome: A unique manifestation associated with thyomoma. Journal of Medical Sciences 2014;28(4):236-40
- Rose ME, Lang DM. Evaluating and managing hypogammaglobulinemia. Cleve Clin J Med 2006; 73:40,43–4,133–7. 7028
- Utter GH, nathens AB, Lee TH, et al. Leukoreduction of blood transfusions does not diminish transfusion-associated microchimerism in trauma patients. Transfusion 2006;46:1863-9
- Vijay Kumawat, Neelam Marwaha, Ratti Ram Sharma. ABO Blood Group Discrepancies: Causes And resolution. The Indian Journal of Transfusion medicine.