Next Generation Sequencing & wiral surveillance in blood donors

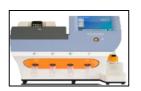
V Sauvage, L Boizeau, D Candotti, S Laperche

National Institute of Blood Transfusion

Department of Blood Transmitted Agents

Transfusion Infectious Risk National Reference Center

Paris, France



Next generation sequencing

2nd generation

HiSeq (Illumina)

PGM (Ion Torrent)

Proton (Ion Torrent)

3rd generation

MinION Mk1B (Oxford Nanopore Technologies)

PACBIO

High throughput

Deep sequencing

Millions of sequence reads in one run

Amplification step of short DNA fragments needed (50-400 bp)

Sequencing of individual molecules (> 10,000 bp)

Real-time sequencing

NGS applications & blood safety

Viral metagenomics: complementary diagnostic tool?

- Increasing chances to detect rare viral strains through unbiased sequencing
- Methodological limitations
 - Low viral DNA content --> viral particle enrichment, viral nucleic acid amplification
 - Abundance of host and mitochondrial DNA --> digestion of host nucleic acids
 - Lack of bio-informatic specific tools to « polish » raw viral sequence reads
 - absence of genes that are conserved among all viruses
 - variability affecting reads assembly, alignment, and mapping
 - Confirmation with specific NAT needed

Pro-active surveillance tool for the animal reservoir

- Arthropods, bats, rodents,...

NGS applications & blood safety

Identification of new viruses in blood donors

PLoS Pathog. 2016 Jan;12:e1005386 Discovery of a Novel Human Pegivirus in Blood Associated with Hepatitis C Virus Co-Infection

Michael G. Berg^{1e}, Deanna Lee^{2,3e}, Kelly Coller¹, Matthew Frankel¹, Andrew Aronsohn⁴, Kevin Cheng¹, Kenn Forberg¹, Marilee Marcinkus¹, Samia N. Naccache^{2,3}, George Dawson¹, Catherine Brennan¹, Donald M. Jensen⁴, John Hackett, Jr. ¹, Charles Y. Chiu^{2,3,5}e

Transfusion-transmission infection risk?

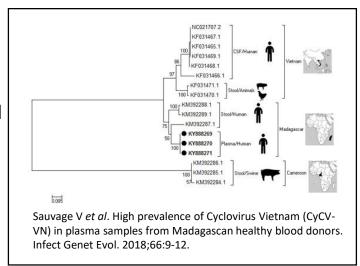
J Infect Dis. 2014;210:2017-8.

No Evidence of Marseillevirus-like Virus presence in Blood Donors and Recipients of Multiple Blood Transfusions

Virginie Sauvage,¹ Audrey Livartowski,¹ Laure Boizeau,¹ Annabelle Servant-Delmas,¹ François Lionnet,² Jean-Jacques Lefrère,¹,³ and Syria Laperche¹

Transfusion. 2015;55:1256-62.

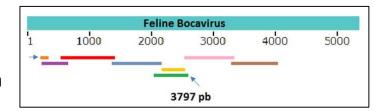
Absence of giant blood Marseille-like virus DNA detection by polymerase chain reaction in plasma from healthy US blood donors and serum from multiply transfused patients from Cameroon


Tung Gia Phan, 1.2 Christelle Desnues, 3 William M. Switzer, 4 Cyrille F. Djoko, 5 Bradley S. Schneider, 6 Xutao Deng, 1.2 and Eric Delwart 1.2 Ann Intern Med 2018;168:158.

Reply to Kandathil *et al*: No evidence of novel human pegivirus 2 active infection in HCV-infected blood donors from France, China and sub-Saharan Africa.

D Candotti, X Deng, T Li, Sy Laperche, V Sauvage.

NGS applications & blood safety


- Identification of known viruses not expected to be present in blood
 - Cyclovirus-Vietnam (CyCV-VN) detected in 43% blood donors from Madagascar
 - 1st identification in CSF of patients with encephalitis of unknown etiology
 - Present in animal and human stools in Madagascar
 - Detected in plasmas of italian blood donors co-infected with HBV, HCV or HIV

- Feline Bocavirus (FBoV) genotype 2 sequences detected in 2 (2.4%) blood donors

from Mauritania

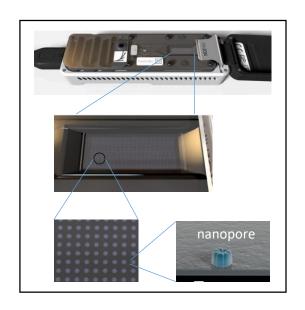
- 1st identification in human
- Domestic cat infections in Portugal, USA, Japon, China

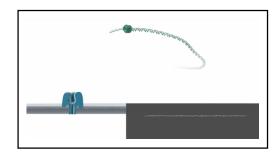
Transfusion-transmission & clinical relevance?

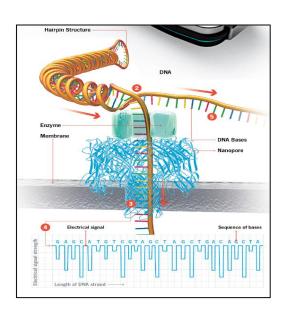
Third generation sequencer

Nanopore MinION technology & HBV sequencing

Why?

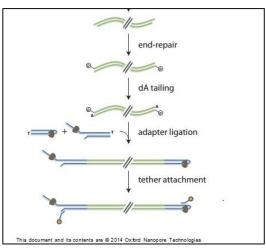

- Surveillance of viral diversity in the blood donor
- Analysis of the molecular complexity of the viral population infecting an individual
 - Quasispecies distribution
 - Multiple genotypes co-infections
 - Recombinant viruses
 - Individual sequences of the complete viral genome --> linkage between mutations

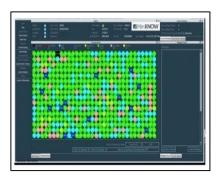

Third generation sequencer


Nanopore MinION technology & HBV sequencing

How?

- Voltage applied on membrane with nanopores (n=2,080) to drive DNA through the pore and an ion flow measured by sensor (several thousand times/sec)
- Change in current pattern or magnitude when DNA molecule passes through the nanopore
- Data streams passed to a microchip (ASIC)
- Data acquisition and analysis carried out by specific software

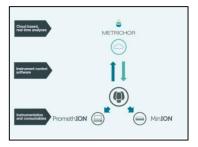



MinION workflow

1. Library construction (~120 min)

- «full-length» HBV PCR product

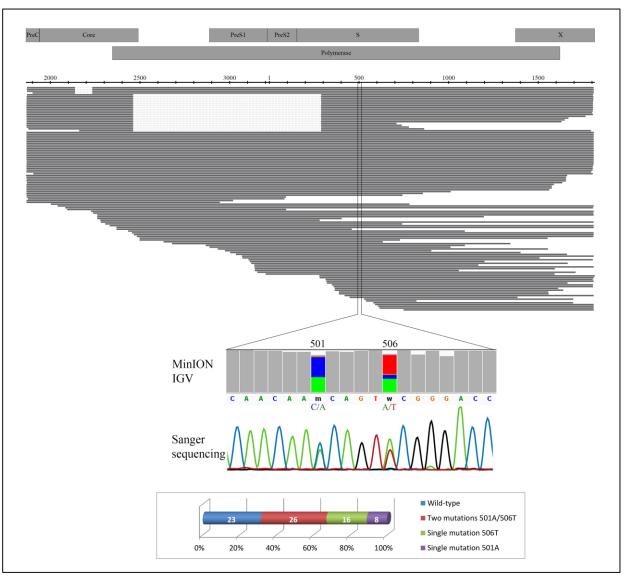
3. Sequencing run & assessment of nanopore activity



2. Initialisation & flow-cell loading(~40 min)

- USB3 port
- SSD
- ->8 GB RAM
- 1 terabytes hard disk space
- QC assessment plateform: nb active pores in flow-cell

4. Base calling & bioinformatics analysis

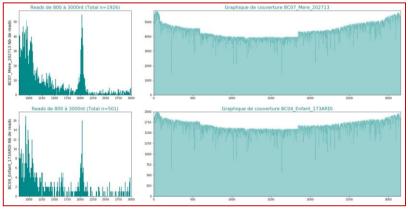


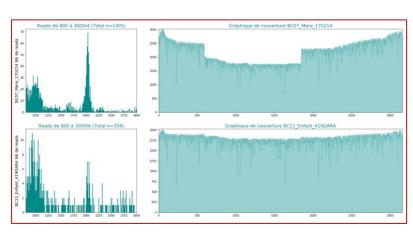
Complete genome HBV consensus sequence: ~20 min

HBV variants in blood donors

- Mixed population of wild type and single nucleotide mutants
- Unique deletions
- (Un)known spliced variants
- Recombinant viruses (absence of parental sequences)

Sauvage V et al. Early MinION™ nanopore single-molecule sequencing technology enables the characterization of hepatitis B virus genetic complexity in clinical samples. PLoS One. 2018; 13:e0194366.


HBV transmission


Mother-to-child transmission of HBV genotype E in Cameroon

- Aim: to obtain genetic evidence of HBV transmission based on whole genome analysis
 - Limited genetic variability of HBV_F --> analysis of long sequences needed
- 26 mother/child pairs analyzed --> 25 HBV_E and 1 HBV_D
- Identical mother and child consensus sequences in 25 pairs
 - Same variants present in corresponding mother and child sequences
- 21 nucleotide differences observed in 1 mother/child pair
- HBV vertical transmission supported in 25/26 (96%) pairs

Child

Conclusions

- Potential contribution of 3rd generation sequencing to blood safety through viral metagenomics & deep genetic characterization of viral strains infecting blood donors and recipients
 - Proactive surveillance of blood donor population
 - Identification of new viruses or emerging variants of known viruses
 - Resolution of difficult cases of transfusion-transmission

Advantages

- Method without a priori
- Portability and affordability
- Speed in data production: i.e. 20 min for HBV 3.2kb genome
- Long single molecule sequencing
- Immediate identification of recombinant viruses & large multiple in-frame deletions

Limitations

- Analytical sensitivity
- Sequencing error rate potentially challenging single-nucleotide resolution but improving
- Still not suitable for high throughput testing
- Data processing & bioinformatics: development of specific softwares for viral sequences

Acknowledgements

V Caro
M Vandenbogaert
Pôle génotypage des Pathogènes
CIBU, ERI
Institut Pasteur
Paris, France

F Lunel-Fabiani
A Pivert
Virology Department
Angers University Hospital
HIFIH Lab EA 3859, LUNAM
Angers, France

Oxford Nanopore Technologies MinIon Access Programme

