

Immunohematology Case Studies 2019 – Multiple common antibodies and an antibody to a high-prevalence antigen in a patient with a transplanted bone marrow

Mirela Raos
Head of Transfusion Medicine Division
Clinical Department of Transfusion Medicine and
Transplantation Biology
University Clinical Hospital Zagreb, Croatia
mraos@kbc-zagreb.hr

Clinical History

- 41-year-old female Caucasian with Myelodysplastic syndrome (MDS-RAEB-1) was admitted to the hospital for allogeneic unrelated bone marrow transplantation (BMT)
- Two red cell units are immediately ordered (Hgb=60 g/L)

Clinical History

- She had two pregnancies
- During the last delivery she received red cell transfusions
- A month ago she received platelets
- There were no chemotherapeutic regimens before priming

Serologic History

• Indirect antiglobulin test (IAT) was performed on two occasions last year and was negative (the last one was done a month ago when she received platelets)

Current Sample Presentation Data

ABO/D: O D positive

Antibody Screen Method: Indirect Antiglobulin Test (IAT) using Column Agglutination Technology (CAT) polyspecific (Biovue, Ortho Clinical Diagnostics)

Antibody Screen Results: Positive

Antibody Identification Method: IAT using CAT-Polyspecific and Neutral (Biovue, Ortho Clinical Diagnostics) and IAT in tube - IgG

Antibody Identification Preliminary Results: likely anti-E and anti-C^w in IAT with untreated and papain-treated cells, but additional alloantibody is suspected, the autocontrol is negative

Antibody identification panel CAT

	D	С	С	Е	е	Cw	K	k	Fva	Fyb	Jka	Jkb	Lea	Leb	P1	М	N	s	s	IAT	Enz
1	+	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	3+	4+
2	0	+	0	0	+	0	0	+	0	0	+	+	0	0	+	+	+	0	0	W	1+
3	0	+	+	0	+	0	0	+	0	+	0	+	0	+	+	+	+	+	+	1+	0
4	0	0	+	+	+	0	0	+	0	W	+	0	0	+	+	+	0	+	+	2+	4+
5	0	0	+	+	0	0	0	0	0	+	0	+	0	+	+	+	+	+	+	3+	4+
6	0	0	+	0	+	0	+	+	+	+	+	+	0	+	+	+	+	+	0	1+	1+
7	0	0	+	0	+	0	+	+	0	+	+	0	0	+	+	+	0	0	+	W	1+
8	0	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	+	0	+	1+	1+
9	0	0	+	0	+	0	0	+	+	0	+	+	+	0	0	+	0	+	0	1+	1+
10	0	0	+	0	+	0	0	+	0	0	+	0	0	0	+	0	+	+	0	1+	1+
11	0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	+	+	1+	0
AC																				0	NT

AC (autocontrol): negative

Antibody identification panel Tube test

	D	С	С	Ε	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	S	s	RT	37C	lgG
1	+	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	2+	2+
2	0	+	0	0	+	0	0	+	0	0	+	+	0	0	+	+	+	0	0	0	0	0
3	0	+	+	0	+	0	0	+	0	+	0	+	0	+	+	+	+	+	+	0	0	W
4	0	0	+	+	+	0	0	+	0	W	+	0	0	+	+	+	0	+	+	0	1+	1+
5	0	0	+	+	0	0	0	0	0	+	0	+	0	+	+	+	+	+	+	0	3+	3+
6	0	0	+	0	+	0	+	+	+	+	+	+	0	+	+	+	+	+	0	0	0	1+
7	0	0	+	0	+	0	+	+	0	+	+	0	0	+	+	+	0	0	+	0	0	0
8	0	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	+	0	+	0	0	1+
9	0	0	+	0	+	0	0	+	+	0	+	+	+	0	0	+	0	+	0	0	0	W
10	0	0	+	0	+	0	0	+	0	0	+	0	0	0	+	0	+	+	0	0	0	1+
11	0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	+	+	0	0	0
AC																				0	0	0

AC (autocontrol) negative RT = room temperature

International Society of Blood Transfusion

Challenge with the Current Presentation

- There are probably anti-E and anti-C^w alloantibodies in the patient's plasma
- Multiple alloantibodies are reactive with all panel cells in IAT with untreated cells and with some enzymetreated cells, and the autocontrol is negative
- An initial review of results would suggest that an additional alloantibody to a high-prevalence antigen, or more likely multiple alloantibodies, besides anti-E and anti-C^w alloantibodies, are present in the patient's plasma

Interim Antibody Identification Possible Answers and Next Steps

- Reactivity appears to be an alloantibody to a high frequency antigen, or more likely multiple alloantibodies, besides anti-E and anti-C^w alloantibodies, present in the patient's plasma
- An inconsistency of reactivity with all cells in the panel was shown (the reaction with enzyme-treated cell was not enhanced and with some cells it was negative), and the autocontrol was negative
- Further testing is needed for a conclusion, particularly phenotyping and testing with pheno-matched RBCs

Further Work

Phenotyping

RBC	ABO	Rh	Kell	Kidd	Lewis	MNS	Duffy	P ₁
Patient	0	CcD.ee, C ^w neg	K-k+	Jk(a+b-)	Le(a-b+)	M+N+S-s+	Fy(a+b-)	P1+

Updated Clinical Information

• Due to urgency, the patient immediately received 1 O D positive E-, C^w-, K- and Jk(b-), (Fy(b+), S+) red cell unit that was compatible in the tube test, but was positive in CAT (XM in IAT)

- Pre-transfusion Hgb=60 g/L, DAT negative
- Post-transfusion Hgb=71 g/L, DAT positive

DAT (CAT): anti-IgG (1+), -IgA, -IgM, C3c, -C3d neg

Eluate: non-specific antibody

Further Work

- Testing with pheno-matched RBCs and papain-treated and 0.2 M dithiothreitol (DTT) treated RBCs, as well as with cord RBCs and autologous RBCs in CAT
- Reaction was positive with 1 unit of pheno-matched O D positive E-, Cw-, K-, Jk(b-), Fy(b-), S- RBCs in IAT (2+)
- After treating the RBCs with papain, the reaction was negative, while after treating RBCs with 0.2 M DTT, it remained positive (1+)
- Antibody reacted in IAT (1+) with cord O D positive E-,
 Cw- RBCs

Further Testing Results and Interpretations

Adsorption and elution

- RBC phenotypes
 - E+, K-, Jk(b-), Fy(b+), S+
 - E+, K-, Jk(b+), Fy(b-), S+
 - E+, K-, Jk(b+), Fy(b+), S-
- Anti-K, -Jk^b, -Fy^b and -S were excluded from the patient's plasma by adsorption and elution studies

Anti-HLA screening

 Anti-HLA screening (ELISA) detected anti-HLA class I and II antibodies in the patient's serum

Updated Clinical Information

Bone marrow transplantation

- The patient underwent allogenic unrelated BMT
- Prior to BMT, she received myeloablative conditioning therapy according to Flu/Bu4/ATG protocol
- Flu/Bu4/ATG protocol consisted of 5 days of fludarabine (total dosage of 250 mg iv.), 4 days of busulphane (total dosage of 792 mg iv.) and 2 days of antithymocyte globulin (total dosage of 300 mg iv.)
- Before BMT, one plasmapheresis was done due to major ABO incompatibility (titer anti-A IgM 32, IgG 64)

Updated Clinical Information

Transfusion support

• Prior to BMT, she received two more O D positive E-, C^w-, K- and Fy(b-), Jk(b+), S+ red cell units that were compatible with the tube test, but positive in CAT (XM in IAT)

- Pre-transfusion Hgb=66 g/L, DAT positive
- Post-transfusion Hgb=67 g/L, DAT positive

DAT (CAT): anti-IgG (2+), -C3d (2+)

Eluate: non-specific antibody

Further Work

Donor

ABO/D: A D positive

IAT: negative

RBC	ABO	Rh	Kell	Kidd	Lewis	MNS	Duffy	P ₁
Donor	Α	ccD.ee, C ^w neg	K-k+	Jk(a+b+)	Le(a-b+)	M+N-S+s+	Fy(a-b+)	P1+
Patient	0	CcD.ee, C ^w neg	K-k+	Jk(a+b-)	Le(a-b+)	M+N+S-s+	Fy(a+b-)	P1+

Further Work

- A blood sample (pre-transfusion and post-transfusion sample) was urgently sent to the International Blood Group Reference Laboratory (IBGRL), Bristol
- After transfusion, additional testing was done in our laboratory (please see tables on next two slides)

Antibody identification panel CAT

	D	С	С	Е	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	S	s	IAT	Enz	El
1	+	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	4+	4+	1+
2	0	+	0	0	+	0	0	+	0	0	+	+	0	0	+	+	+	0	0	2+	2+	1+
3	0	+	+	0	+	0	0	+	0	+	0	+	0	+	+	+	+	+	+	2+	2+	1+
4	0	0	+	+	+	0	0	+	0	W	+	0	0	+	+	+	0	+	+	4+	4+	1+
5	0	0	+	+	0	0	0	0	0	+	0	+	0	+	+	+	+	+	+	4+	4+	1+
6	0	0	+	0	+	0	+	+	+	+	+	+	0	+	+	+	+	+	0	2+	2+	1+
7	0	0	+	0	+	0	+	+	0	+	+	0	0	+	+	+	0	0	+	2+	0	0
8	0	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	+	0	+	2+	2+	1+
9	0	0	+	0	+	0	0	+	+	0	+	+	+	0	0	+	0	+	0	2+	2+	1+
10	0	0	+	0	+	0	0	+	0	0	+	0	0	0	+	0	+	+	0	2+	0	2+
11	0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	+	+	2+	2+	1+
AC																				1+		

AC (autocontrol): positive (mixed field appearance was not noted)

DAT (CAT): anti-IgG (2+), -C3d (2+), -IgA, -IgM, -C3c negative

El (eluate): unidentified antibody

International Society of Blood Transfusion

Antibody identification panel Tube technology

						1								1				r -				
	D	С	С	E	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	S	s	RT	37C	lgG
1	+	0	+	0	0	+	0	+	0	+	+	+	0	+	+	0	+	0	+	0	2+	3+
2	0	+	0	0	+	0	0	+	0	0	+	+	0	0	+	+	+	0	0	0	0	3+
3	0	+	+	0	+	0	0	+	0	+	0	+	0	+	+	+	+	+	+	0	0	2+
4	0	0	+	+	+	0	0	+	0	W	+	0	0	+	+	+	0	+	+	3+	4+	3+
5	0	0	+	+	0	0	0	0	0	+	0	+	0	+	+	+	+	+	+	3+	4+	3+
6	0	0	+	0	+	0	+	+	+	+	+	+	0	+	+	+	+	+	0	0	0	2+
7	0	0	+	0	+	0	+	+	0	+	+	0	0	+	+	+	0	0	+	0	0	1+
8	0	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	+	0	+	0	0	2+
9	0	0	+	0	+	0	0	+	+	0	+	+	+	0	0	+	0	+	0	0	W	2+
10	0	0	+	0	+	0	0	+	0	0	+	0	0	0	+	0	+	+	0	0	0	1+
11	0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	+	+	0	W	2+
AC																				0	0	0

AC (autocontrol) negative RT = room temperature

International Society of Blood Transfusion

Further Testing Results and Interpretations

From our repeated testing

- Reactions were stronger after transfusion
- DAT became positive and a non-specific antibody was detected in the eluate
- An anti-E and anti-C^w antibody, as well as an antibody to a high-prevalence antigen were present in the patient's plasma
- Investigation stopped there as we sent a sample for an urgent investigation to IBGRL, Bristol, and we did not repeat adsorption and elution studies

Further Testing Results and Interpretations

From testing at IBGRL

- In the Preliminary Report, the presence of anti-E and anti-C^w was confirmed in the patient's plasma, an antibody to a high-prevalence antigen of anti-Yt^a specificity was found and an anti-Jk^b antibody was suspected, but further testing was needed.
- The patient's cells (from the pre-transfusion sample) were Yt(a-b+)
- An anti-Jk^b antibody was afterwards confirmed in the patient's plasma
- Four examples of Yt(a-), E-, Cw-, Jk(b-) cells were compatible with the patient's plasma and no additional antibodies were detected

International Society of Blood Transfusion

Updated Clinical Information

- The patient received eight more red cell units (E-, C^w-, Jk(b-) before she was discharged from the hospital
- She was serologically monitored during transfusion support (please see the table on the next slide)
- By means of PCR-STR monitoring for chimerism, she was determined to be a 100% donor
- 3 months after BMT, only anti-C^w and -E specificity (only with the sensitive enzyme technique) were identified in the patient's plasma, and anti-Jk^b and -Yt^a were below the sensitivity of the tests

Updated Clinical Information

 Red cell units transfused and laboratory findings prior and after all red cell transfused (table).

RBC unit transfused /Transfusion event	1.	2.	3.	4.	5.	6.	7.	8.
Number of RBC units transfused	1	2	1	2	2	1	1	1
XM (IAT in CAT)	pos	pos	pos	pos	pos	pos	neg	neg
Hgb prior transfusion (g/L)	60	66	45	49	63	65	69	79
DAT prior transfusion	neg	pos	pos	pos	pos	pos	NT	NT
Hgb after transfusion (g/L)	71	67	56	76	74	78	86	86
DAT after transfusion	pos	pos	pos	pos	pos	pos	NT	NT
Total Bilirubin (μmol/L)	46	39	23	NT	10	12	20	27
LDH (U/L)	290	229	364	NT	189	188	268	437

NT = not tested

Conclusions

- The patient received allogenic unrelated BMT for the MDS and she immediately needed transfusion support
- Anti-C^w and anti-E alloantibodies were identified in the patient's plasma
- A suspected antibody of the anti-Yt^a specificity to a high-prevalence antigen was confirmed at IBGRL, Bristol
- Another antibody, of anti-Jk^b specificity, was suspected and confirmed to be present in the patient's plasma at IBGRL, Bristol
- She was transfused with incompatible red cell units (Yt(a+) in emergency, with no ill effects

Summary of Case Challenges

- A patient with MDS was admitted to the hospital for an allogeneic unrelated BMT and red cell units were immediately ordered
- Before transfusion, anti-E, anti-C^w and an antibody to a high-prevalence antigen (later found to be anti-Yt^a) were identified in the patient's plasma
- During the immunosuppressive myeloablative conditioning therapy prior to BMT, the patient developed an anti-Jk^b as a subsequent immune response to transfused red cell units
- She received incompatible red cell units and had a good hematological response
- After BMT, the patient was determined to be a 100% donor
- She received the last red cell unit on day +29 after BMT and was soon dismissed from hospital
- Three months after BMT, anti-Jkb and -Yta were not detectable

Lessons Learned by the Case

- A patient with MDS developed multiple common antibodies (anti-E, anti-C^w) and an antibody to a high-prevalence antigen (anti-Yt^a) after 16 units of platelets were transfused a month ago, when the IAT was negative. During immunosuppressive myeloablative conditioning therapy for allogenic unrelated BMT, she developed another antibody of anti-Jk^b specificity after a transfusion of two Jk(b+) red cell units. All antibodies were developed despite the patient's diagnosis and immunosuppressive therapy
- In a patient with an antibody to a high-prevalence antigen, an underlying anti-Jk^b was very difficult to detect. As samples were urgently sent to IBGRL in Bristol, adsorption and elution studies to detect newly developed antibodies after transfusion were not done. An anti-Jk^b was detected afterwards in Bristol. From our panel results, it can be seen that reactions with two Jk(b-) RBCs were negative in the enzyme which could lead us to suspect an anti-Jk^b

Lessons Learned by the Case

- Compatible red cell units were not available, so incompatible blood was transfused (Yt(a+), E-, C^w- Jk(b-)) with no evidence of decreased red cell survival. Clinical significance of anti-Yt^a is variable, and some have been implicated in an immediate HTR. Therefore, after this case, we set up a Monocyte Monolayer Assay (MMA) to be able to predict clinical significance of unknown antibodies in the future
- In this case, the transplant donor was Jk(a-b+) and one must be aware that the patient's anti-Jk^b and anti-Yt^a could also cause acute or delayed hemolysis of the donor's Jk(b+) RBCs from the BMT and contribute to morbidity and mortality, but this was not the case, as the patient normally recovered hematopoiesis

ISBT Terminology of the YT Blood Group System

- The anti-Yt^a to a high frequency antigen was first found in 1956
- The antithetical antibody, anti-Yt^b, detects an antigen on red cells of about 8% of white people and was found eight years later
- YT, the Cartwright system, now includes 5 antigens; an inherited Yt(a-b-) phenotype has not been found.
- Cartwright is the 11th human blood group system recognized by ISBT (ISBT 011)
- The Cartwright blood group antigens are encoded by the *ACHE* gene on chromosome 7q22, which produces acetylcholinesterase (AchE)

ISBT Terminology of the Yt Blood Group System

- Two single nucleotide changes in *ACHE* are associated with Yt^a/Yt^b polymorphism: 1057C>A in exon 2 encodes His353Asn and 1432C>T, a silent mutation in exon 3 in the codon for Pro477
- Yta is not affected by trypsin, but is destroyed by α-chymotrypsin treatment of red cells. Papain and ficin may also destroy the antigen, but this appears to depend on the anti-Yta used. Yta and Ytb are sensitive to disulphide bond reducing agents
- YT antigens are present on red cells from cord blood samples, but the strength of Yta on cord cells is weaker than that on the red cells of adults

Brief Review of the Blood Group Antibody

- Anti-Yt^a and -Yt^b are stimulated by pregnancy or transfusion, neither is 'naturally occuring'
- YT antibodies are mostly IgG and require an antiglobulin test to agglutinate red cells
- Some anti-Yta bind the complement, others do not
- YT antibodies do not cause HDFN
- Anti-Yta has been implicated in an immediate HTR
- Many patients with anti-Yt^a have received multiple transfusion of Yt(a+) red cells with no ill effects
- For transfusion purposes, each sample of anti-Yta must be accessed independently. For the strong examples, Yt(a-) rare units is recommended. An MMA may also be proposed.

International Society of Blood Transfusion

References

- 1. Daniels G. Human Blood Groups, 3rd ed, Oxford, UK: Blackwell Publishing 2013
- 2. Reid M, Lomas-Francis C, Olsson M. The Blood Group Antigen FactsBook, 3rd ed, Academic Press, Inc. San Diego, California, USA 2012
- 2. Franchini M, Gandini G, Aprili G. Non-ABO red blood cell alloantibodies following allogenic hematopoietic stem cell transplantation. Bone Marrow Transplantation 2004;33:1169-1172