

Immunohematology Case Studies 2017 - 3

A Tale of Two T-Cells

Dhana Gounder and Alison Badger New Zealand Blood Service Auckland, New Zealand dhana.gounder@nzblood.co.nz

Clinical History

Presenting History:

- Nine year old Asian male admitted in November 2013 with two week history of intermittent fevers, abdominal distension, epigastric pain, occasional cough and weight loss
- Clinical examination revealed tender hepatosplenomegaly and widespread lymphadenopathy
- Blood tests: anaemia(Hb 98g/L); thrombocytopaenia (platelets 31 x 10⁹/L); raised liver enzymes
- Bone Marrow diagnosis Haemophagocytic lymphohistiocytosis (HLH)

Clinical History

Management and Progress

- Initial response to HLH therapy but weaning associated with return of cytopaenia and organomegaly
- 26/07/14 received matched unrelated donor bone marrow transplantation
- June, 2015 developed late post-transplant immune haemolytic anaemia requiring steroid therapy and a 4 week course of Rituximab. Transfusion dependent.
- June, 2015 developed red cell alloantibodies

Serologic History

- Negative antibody screen from initial presentation in November 2013 to August 2014
- Transfused 4 red cells between 08/11/13 and 13/08/14
- June 2015 auto AHG reactive antibody with anti-E and anti-c, DAT positive (IgG + C3d)
- Unable to exclude anti-Jk^a with adsorbed plasma
- Transfusion commenced with O R₁R₁ K- Jk(a-) red cells
- Genotyping performed 22/06/15 on whole blood sample – patient predicted to be R₁R₂, K- k+, Jk(a+b+), Fy(a+b-), M+N+S+s+
- Are the anti-E and anti-c autoantibodies?

Sample Presentation Data

ABO/Rh: AB Pos (mixed field evident)

DAT: Positive (IgG + C3d)

Antibody Screen Method: Gel IAT

Antibody Screen Results: Positive

Antibody Identification Method: Gel IAT

Antibody Identification Preliminary Results: auto

AHG and Enzyme reactive antibody

Original blood group of patient O Positive, donor Bone Marrow AB Positive

Sample Presentation Data using Native Plasma.

D	C	С	Е	е	Cw	K	k	Fy ^a	Fy ^b	Jk ^a	Jk ^b	М	N	S	S	P ₁	Le ^a	Le ^b	Gel IAT	Gel ENZ
+	0	+	0	+	0	+	+	0	+	+	0	+	0	+	0	+	0	+	3+	4+
+	+	0	0	+	+	0	+	+	0	0	+	+	0	+	0	+	+	0	3+	4+
+	+	0	0	+	0	0	+	+	0	0	0	0	+	0	+	0	0	0	1+	4+
+	+	0	0	+	+	+	+	0	+	+	+	+	+	0	+	0	0	+	1+	4+
+	+	+	+	0	0	0	+	0	+	+	+	+	0	0	+	+	+	0	4+	4+
+	0	+	+	0	0	+	+	+	+	0	+	+	0	+	0	0	0	+	4+	4+
0	+	+	0	+	0	+	+	+	+	+	+	0	+	0	+	0	0	+	2+	4+
0	0	+	0	+	0	0	+	0	+	+	0	+	0	+	0	+	0	+	4+	4+
0	0	+	0	+	0	0	+	0	+	+	0	+	+	+	+	+	+	0	3+	4+
0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	0	0	3+	4+
0	0	+	0	+	0	+	0	+	0	+	+	+	0	0	+	+	0	+	3+	4+
+	+	0	+	+	0	0	+	+	+	+	0	+	+	0	+	+	0	+	4+	4+
																	Αι	uto	4+	4+

Further Work Allo Adsorption

D	С	С	E	е	Cw	K	k	Fy ^a	Fy ^b	Jk ^a	Jk ^b	М	N	S	s	P ₁	Le ^a	Le ^b	ABS R1R1	ABS R2R2	ABS rr
+	0	+	0	+	0	+	+	0	+	+	0	+	0	+	0	+	0	+	wk	0	0
+	+	0	0	+	+	0	+	+	0	0	+	+	0	+	0	+	+	0	0	0	0
+	+	0	0	+	0	0	+	+	0	0	0	0	+	0	+	0	0	0	0	0	0
+	+	0	0	+	+	+	+	0	+	+	+	+	+	0	+	0	0	+	0	0	0
+	+	+	+	0	0	0	+	0	+	+	+	+	0	0	+	+	+	0	3+	0.5	3+
+	0	+	+	0	0	+	+	+	+	0	+	+	0	+	0	0	0	+	3+	0.5	3+
0	+	+	0	+	0	+	+	+	+	+	+	0	+	0	+	0	0	+	wk	0	0
0	0	+	+	+	0	0	+	0	+	+	0	+	0	+	0	+	0	+	3+	1+	3+
0	0	+	0	+	0	0	+	0	+	+	0	+	+	+	+	+	+	0	0.5	0	0
0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	0	0	0.5	0	0
0	0	+	0	+	0	+	0	+	0	+	+	+	0	0	+	+	0	+	wk	0	0
+	+	0	+	+	0	0	+	+	+	+	0	+	+	0	+	+	0	+	2+	0	2+

Four samples received between 13/06/15 and 24/06/15 all with the same serological picture of auto AHG reactive antibody with anti-E plus anti-c underlying.

Challenge with the Current Presentation

- Continued transfusion over 1 week period
- T cell chimerism showed 70% donor 30% patient cell populations
- Genotyping will detect DNA from both populations
- Post transplant genotype: R₁R₂, K- k+, Jk(a+b+), Fy(a+b-), M+N+S+s+
- Patient and donor pre transplant samples obtained and genotyped again
- Patient genotype: R₁R₂, K- k+, Jk(a+b+), Fy(a+b-), M+N+S-s+
- Donor genotype: R₁R₁, K- k+, Jk(a-b+), Fy(a+b-), M+N-S+s+

Patient Genotyping Post Transplant using inno-train RBC-Ready Gene

International Society of Blood Transfusion

BMT Donor Genotype

Patient Pre Transplant Genotype

Challenge with the Current Presentation

 Younger patients are slow to engraft as they are very immune competent.

- Has the immuno competent graft formed allo antibodies against the recipient (GvHD)?
 Or..
- Are the antibodies auto antibodies formed by the patient?

Interim Antibody Identification Possible Answers and Next Steps

- Patient genotype: R₁R₂, K- k+, Jk(a+b+), Fy(a+b-), M+N+S-s+
- Donor genotype: R₁R₁, K- k+, Jk(a-b+), Fy(a+b-), M+N-S+s+
- Red cells selected for transfusion :
 - R₁R₁, K-, Jk(a-), Fy(b-), S-
- Because it is unknown whether the antibodies are directed against the patient or donor cells, the 2 genotypes were compared and antigen negative red cells selected for any potential antibody that could be stimulated.

Updated Clinical Information

- Patient transfusion dependence decreasing in frequency
- Last transfusion 2nd November 2015
- Currently managed on low dose sirolimus with excellent effect
- Mixed chimerism which is stable

Conclusions

- It is still unknown whether the antibodies are directed against the recipient or the donor cells
- Is this the donor lymphocytes giving rise to formation of alloantibodies or is this an autoimmune phenomenon?
 - Patient will be maintained on a transfusion protocol requiring R₁R₁, K-, Jk(a-), Fy(b-), S- RBC units

Lessons Learned by the Case

- A full clinical history is always helpful!
- Be aware of transplant status before considering genotyping
- Chimerism can be a limitation with techniques such as genotyping where DNA is amplified
- Testing is unable to discriminate between the 2 different DNA populations
- Consider all possibilities when it comes to antibody production

References

- Khalil, A et al. Autoimmune Complications after Hematopoietic Stem Cell Transplantation in Children with Nonmalignant Disorders. The Scientific World Journal 2014;3.
- 2. Seo, Jong Jin. Hematopoietic cell transplantation for hemophagocytic lymphohistiocytosis: recent advances and controversies. Blood Research 2015;50.
- 3. Shenoy, Shalini. Professor of Pediatrics, Stem Cell Transplants for Sickle Cell Disease Consequences of Chimerism.