

Immunohematology Case Studies 2017 - 1

Edmond Lee MSc, FIBMS, FRSM Red Cell Immunohaematology, NHSBT, UK

Clinical History

- A 73 year old male
- Referred for redo vascular surgery on Jun 2016
- Osteomyelitis 2 years ago (May 2014)
- Antibody screen (ABID) was negative
- Transfused 3 occasions on Nov 2015 (a total 15 units during surgery)
- ABID positive (Jun 2016)
- Sample referred to Reference Laboratory after routine hours for investigation for following date surgery
- Patient is from Philippines & speaks Tagalog

Serologic and Transfusion History

Antibody screen negative on:

- 18 May 2014
- 05 Oct 2015
- 26 Nov 2015

Patient was transfused the following:

- 28 Nov 2015 9 units red cells transfused
- 23 Nov 2015 4 units red cells transfused
- 26 Nov 2015 2 units red cells transfused

Current Sample Presentation Data

- ABO/Rh: A, D+C+c+E+e+,K-
- DAT: negative
- Antibody Screen Method: using IH1000
- Antibody Screen Results: Panel reactive
- Antibody Identification Method: Bio-Rad IAT (3+), Bio-Rad enzyme IAT (4+) and Tube LISS-IAT (2+)

Antibody Identification Preliminary Results:

 Pan reactive suggestive of antibody to a high frequency antigen

Challenge with the Current Presentation

- Extended phenotyping was performed as this appeared to be antibody to a high prevalence antigen
- M+S+s+ excluded anti-U
- Lu(a-b+), Kp(a+b-) excluded anti-Lu^b or anti-Kp^b
- Fy(a+b-) excluded anti-Fy³
- Jk(a-b-) suggestive the presence of anti-Jk3

Panel Sample

	D	С	C	E	e	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	М	N	S	S	Gel IAT	Gel Enz IAT	Tube IAT
1	+	0	+	+	0	0	0	+	0	+	+	+	0	+	+	0	+	0	+	3+	4+	2+
2	0	+	0	0	+	0	0	+	0	0	+	+	0	0	+	+	+	0	0	3+	4+	2+
3	0	+	+	0	+	0	0	+	0	+	0	+	0	+	+	+	+	+	+	3+	4+	2+
4	0	0	+	+	+	0	0	+	0	W	+	0	0	+	+	+	0	+	+	3+	4+	2+
5	0	0	+	+	0	0	0	0	0	+	0	+	0	+	+	+	+	+	+	3+	4+	2+
6	0	0	+	0	+	0	+	+	+	+	+	+	0	+	+	+	+	+	0	3+	4+	2+
7	0	0	+	0	+	0	+	+	0	+	+	0	0	+	+	+	0	0	+	3+	4+	2+
8	0	0	+	0	+	0	0	+	+	0	+	+	+	0	+	0	+	0	+	3+	4+	2+
9	0	0	+	0	+	0	0	+	+	0	+	+	+	0	0	+	0	+	0	3+	4+	2+
10	0	0	+	0	+	0	0	+	0	0	+	0	0	0	+	0	+	+	0	3+	4+	2+
11	0	0	+	0	+	0	0	+	+	0	0	+	0	+	0	+	+	+	+	3+	4+	2+
12	0	0	+	0	+	0	0	+	+	+	+	0	0	+	0	0	+	0	+	3+	4+	2+

Jk(a-b-) panel

	D	С	C	E	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	М	N	S	S	Gel IAT	Tube IAT
1	+	0	+	+	+	0	0	+	0	+	0	0	0	+	+	+	+	0	+	0	0
2	+	+	0	0	+	0	+	+	+	0	0	0	+	0	+	0	+	+	0	0	0
3	0	0	+	0	÷	0	0	+	+	0	0	0	+	0	+	÷	÷	+	+	0	0

Further Work

Testing for 2M Urea lysis

Jk(a-b-) cells lack the Urea Transporter (UT-B1) encoded by the SLC14A1 gene, and therefore are not lysed with 2M urea solution

Jk(a-b-) phenotype

- Jk_{null} or Jk(a-b-) first reported by Pinkerton *et al* (1959) from a Filipino woman of Chinese & Spanish ancestry
- Cases of Jk(a-b-) are more frequent in the Polynesian & Finns
- Other populations, Chinese, Japanese, Asian Indians, Native Brazilians, African American, Tunisian, and European descent

Anti-Jk3

- Reacted optimally by IAT
- Enhanced by enzyme treated RBC
- Usually IgG, less common to be than IgM antibodies
- Complement binding
- Found in a non-transfused male
- No preference for Jk(a+b-) or Jk(a-b+)
- Not a mix of anti-Jk^a and anti-Jk^b
- No to severe/immediate or delayed transfusion reaction
- No to mild HDFN
- Auto anti-Jk3 has been reported

Transient Jk(a-b-) phenotype

Case report of a transient Jk(a-b-) phenotype

- Russian woman with myelofibrosis who made anti-Jk3 at the time her RBCs typed Jk(a-b-)
- Severe transfusion reaction
- Five weeks later typed as Jk(a+^wb-)
- Anti-Jk^b was detected
- One year later typed as Jk(a+b-) with no anti-Jk3 and/or anti-Jk^b detected

Summary of Case Challenges

- Jk(a-b-) donations are rare
- Frozen and recovery donations were required for transfusion purpose
- Only anti-Jk3 was identified post transfusion in this case, using Jk(a-b-), Fy(a-b+) RBCs (exclusion of anti-Fy^b in the Fy(a-b+) patient)
- No confirmation of the presence of additional anti-Jk^a or anti-Jk^b

Lessons Learned by the Case

- Molecular basis of the Jk(a-b-) phenotype are diverse among the different populations
- 2M Urea solution is considered easier and cheaper than genotyping to mass screen Jk_{null} blood donors in countries with a significant prevalence of this phenotype
- The ethnic origin and/or spoken language of the patient can give very important information about the putative rare blood type. In this case, the patient spoke Tagalog which is a Filipino dialect and quickly provided the clue for the antibody to a high prevalence antigen to be a likely anti-Jk3

Molecular basis for JK phenotype

- JK gene (SLC14A1, HUT11A)
- Located at chromosome 18q12.3
- Jk^a antigen: p.Asp280 (c.838G)
- Jk^b antigen: p.Asn280 (c.838A) Carrier molecule

Multi-pass glycoprotein.

From Reid, Lomas-Francis & Olsson, The Blood Group Antigen Factsbook, 3rd Ed 2012

Molecular based of some silencing of *JK*A* or *JK*B* alleles

Reference allele, *JK*02* (NM_015865), encodes Jk^b, Jk3

Allele name	Exon/ intron	Nucleotide	Amino acid	Ethnicity (prevalence)	Allele name	Exon/ intron	Nucleotide	Amino acid	Ethnicity (prevalence)
JK*01N.01	4 & 5	Exons 4&5 deleted	Initiation Met absent	Tunisian, English, Bosnian (Rare)	JK*02N.01	Intron 5	IVS5-1 g>a	Exon 6 skipped; in frame	Polynesian, Chinese (Several)
JK*01N.02	5	202C>T	Gln68Stop	Caucasian, American (Rare)	JK*02N.02	Intron 5	IVS5–1 g>c	Exon 6 skipped; in frame	Chinese (Rare)
JK*01N.03	7	582C>G	Tyr194Stop	Swiss, English (Few)	JK*02N.03	5	222C>A, 499A>G	Asn74Lys, Met167Val	Taiwanese (Rare)
JK*01N.04	10	956C>T	Thr319Met	African American, (Rare)	JK*02N.04	Intron 7	IVS7+1g>t	Exon 7 skipped; frameshift \rightarrow	French (Rare)
JK*01N.05	7	561C>A	Tyr187Stop	African American				Leu223Stop	
				(Rare) African Brazilian	JK*02N.05	8	723delA	Frameshift→ Ile262Stop	Hispanic American (Rare)
				(Many)	JK*02N.06	9	871T>C	Ser291Pro	Finns (Several)
JK*01N.06	Intron 5	IVS5–1 g>a	Exon 6 skipped; in frame	Asian Indian (Rare)	JK*02N.07	9	896G>A	Gly299Glu	Taiwanese (Rare)
					JK*02N.08	10	956C>T	Thr319Met	Indian, Pakistani (Rare)
					JK*02N.09 [^]	5	191G>A	Arg64Gln	Black (Rare)

From Reid, Lomas-Francis & Olsson, The Blood Group Antigen Factsbook, 3rd Ed 2012

References

1. Edwards-Moulds J & Kasschau MR. The effect of 2 molar urea on Jk(a-b-) red cells. *Vox Sanguinis,* 1988;55:181-185.

2. Edwards-Moulds J & Kasschau MR. Methods for the detection of Jk heterozygotes: Interpretations and applications. *Transfusion*, 1988;28:545-548.

3. Ellisor SS, Reid ME, O'Day To et al. Autoantibodies mimicking anti-Jk^b plus anti-Jk³ associated with autoimmune haemolytic anemia in a primipara who delivered an unaffected infant. *Vox Sanguinis* 1983;45:53-59.

4. Issitt PD, Obarski G, Hartnett PI and Wren MR . 1990. Temporary suppression of Kidd system antigen expression accompanies by transient production of anti-Jk³. *Transfusion*, 1990;30:46-50.

5. Judd J, Johnson ST & Storry JR. Judd's Using 2 M Urea for the Screening /Confirmation of Jk(ab-), Judd's Methods in Immunohematology. Third Edition, 2008, P357-P359.

6. Reid ME, Lomas-Francis C & Olsson ML The blood group antigen Facts Book. Third Edition, 2012. With permission by the authors to use the diagram for Kidd carrier protein and the table for molecular based of silencing of JK^*A or JK^*B allele.

7. Obarski G *et al,* The Jk(a-b-) phenotype, probably occurring as a transient phenomenon. [abstract] *Transfusion*, 1987; 27:548.

8. O'Day T. A second example of autoanti-Jk³. *Transfusion*, 1987;27:442.

9. Pinkerton FJ, Mermoid IE, Likes BA, Jack JA & Noades J. the phenotype Jk(a-b-) in the Kidd blood group system. *Vox Sanguinis* 1959;4:155-160.

10. Wester ES, Johnson ST, Copeland T, Malde R, Lee E, Storry JR & Olsson M. Erythroid urea transporter deficiency due to novel JKnull alleles. *Transfusion*, 2008; 48:365-372.