ISBT – Working Party on Infectious Disease

POR Testing for Platelet Bacterial Contamination:

An ongoing risk under continuous improvement

8th July 2012.

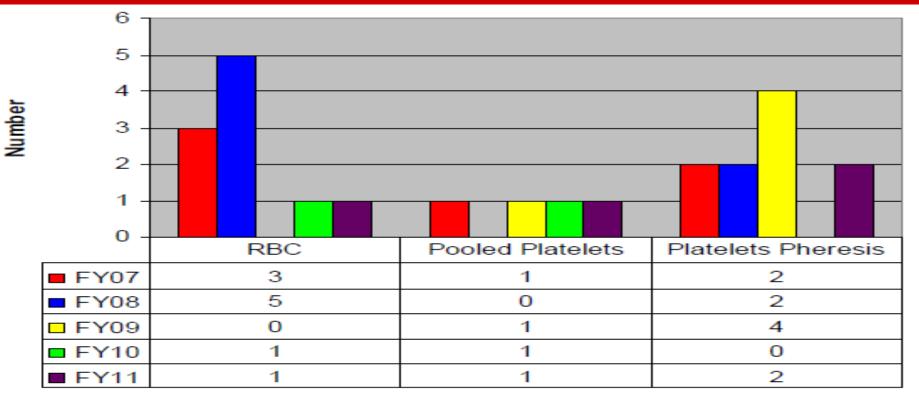
Wm. Andrew Heaton¹ MD

NSLIJ Health System & Hofstra NSLIJ School of Medicine

The views are those of the presenter and not of the NSLIJ Health System or Hofstra

¹Andrew Heaton has received research support and/or honoraria from Verax, Hemonetics, Fenwal, & Immunetics, and has consulted for Beckman-Coulter, Verax, & Novartis Diagnostics

HOFSTRA NORTH SHORE-LIJ CHOOL of MEDICINE AT HOFSTRA UNIVERSITY


Objectives:

- 1. Describe platelet bacterial risks and recent intervention effects.
- 2. Discuss residual risk due to false negative bacterial cultures.
- 3. Relate residual bacterial contamination to clinically effects.
- 4. Review the Point of Release testing:
 - Outcome & Feasibility
- 5. Effect on Transfusion Related Death & US Regulatory process.
- 6. Summarize the policy related questions.

Current Situation:

- Reported US platelet bacterial contamination fatality rate is ~1.5 deaths per million PC doses transfused (~ 3 deaths/year)
- The Bacterial Testing Issue:
 - Culture as a release test has a ~ 26% sensitivity
 - 231 out of 893/million contaminated units detected
 - Only ~10% transfusion sepsis is reported

US Post Platelet Transfusion Sepsis & Morbidity

Oct 95 – Sep 04, 60 FDA contaminated PC reports of Post-Tx fatality

• 38 of the 60 (63.3%) cases were gram-negative organisms

~ 2/3 of post-transfusion sepsis organisms were gram-positive
 Effect of Skin Preparation, Inlet-line Diversion & Culture Upgrade

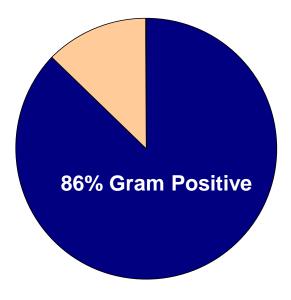
• ARC septic reactions decreased from 1:40,000 to 1:86,000, ~ 50% reduction

• JHU decrease from 7.45/100K to 2/100K transfusions, 70% reduction

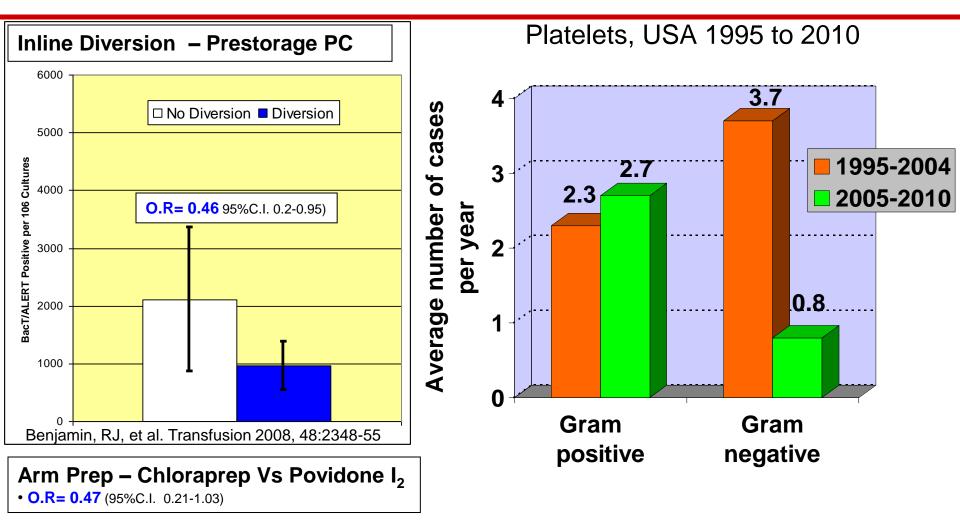
Shore LIJ FDA reported death decreased 60% (7/yr in 2001-3) to 2.8/yr 2006-10 aaBB Bacterial Assay Task Force 2012

Bacterial Testing on Apheresis Platelets

Confirmed positive cases (3/1/2004 – 1/31/2007):

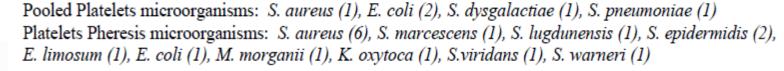

Gram positive (n=196):

Staphylococcus, coagulase negative	87
Staphylococcus epidermidis	22
Staphylococcus aureus	13
Staphylococcus (others)	13
Streptococcus sp.	43
Bacillus sp.	8
Enterococcus sp.	3
Listeria monocytogenes	4
Lactobacillus/Micrococcus/Unspecified	1 each


Gram negative (n=29):

Escherichia coli	12
Serratia marcescens	6
Klebsiella sp.	8
Citrobacter/Enterobacter/Unspecified	1 each

Eder AF et al, Transfusion 2007



Bacterial Safety Interventions and Effects

2005-2010:

Nort

Niu MT, et al. Transfus Med Rev. 2006;20:149-157

Bacterial Residual Risk post BacT/Alert Screen

	# Tested	Confirmed +'ve	Rate /10 ⁶	Ref.
PASSPORT	6,039	4	662 (1:1,509)	Dumont 2010
Irish BS Day 8	8,282	7	1,183 (1:850)	Murphy 2008
Irish BS Day 4	3,310	1	3,310 (1:302)	Murphy 2008
Welsh BS	6,438	6	931 (1:1,074)	Pearce 2011
Combined	24,369	18	1,353 (1:740)	

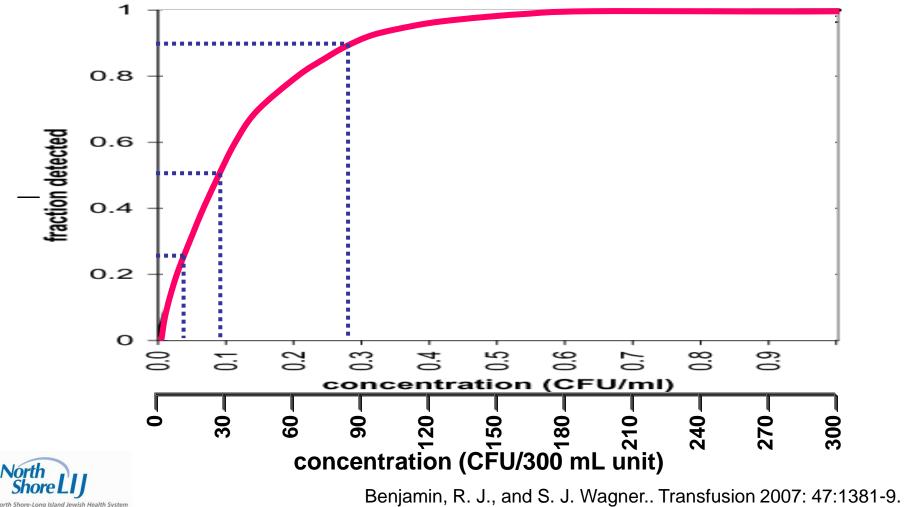
Sensitivity of culture for U.S. standard practice²

25.9%

Sensitivity of culture under best practice¹

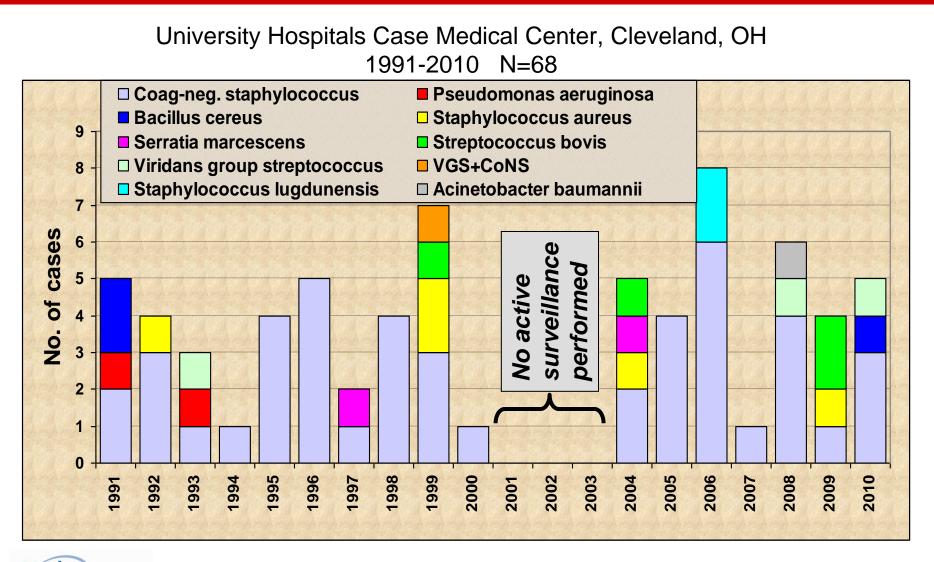
33%

Passive Surveillance results in 10.6 times less likely to detect a septic reaction



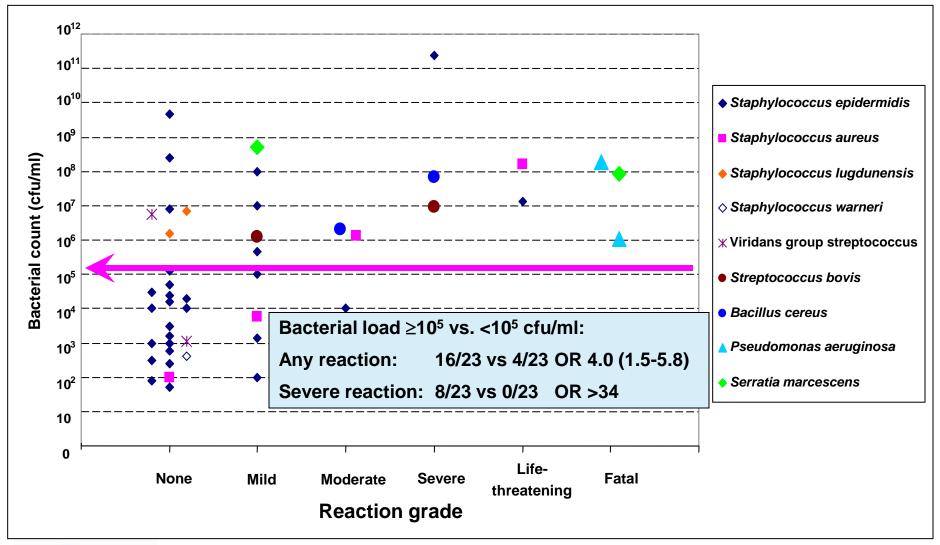
Murphy et al. Vox Sanguinis 2008 Dumont et al. Transfusion: 50; 589; 2010.

aaBB Bacterial Assay Task Force 2012


Limitations of Early Culture Testing

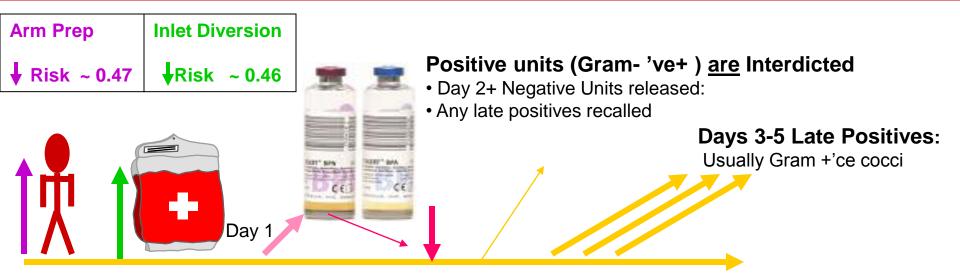
Modeling the effect of concentration on bacterial detection when a 300 mL unit is contaminated with 0-300 CFUs (0-1 CFU/mL). The figure shows the probability curves for an 8-mL sample divided into two culture bottles.

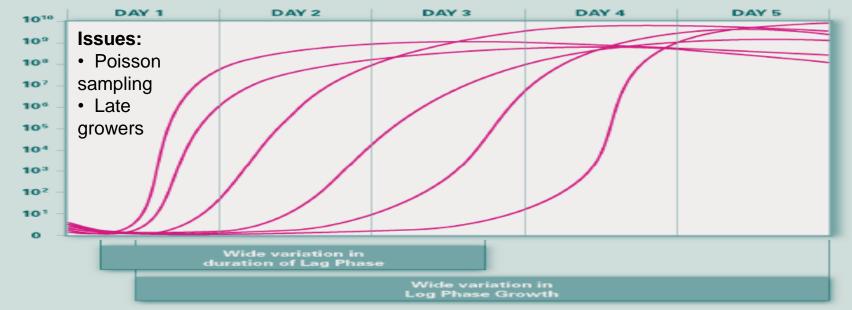
North Shore-Long Island Jewish Health System


Bacterial Contamination of Platelets

Yomtovian & Jacobs Surveillance methods....1991 through 2004. Transfusion 46:719-30;2006. – 2010 update

North Shore-Long Island Jewish Health System

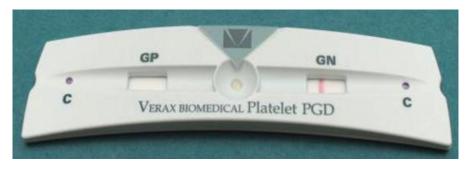

Bacterial load, species virulence, & Tx reaction

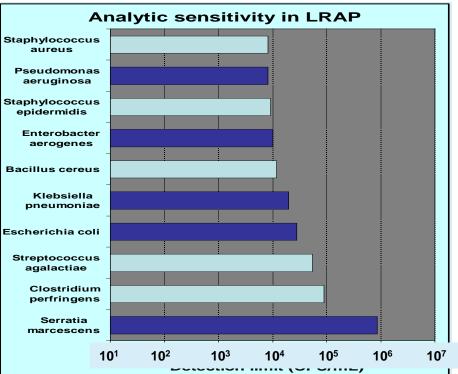


North Shore LUJ

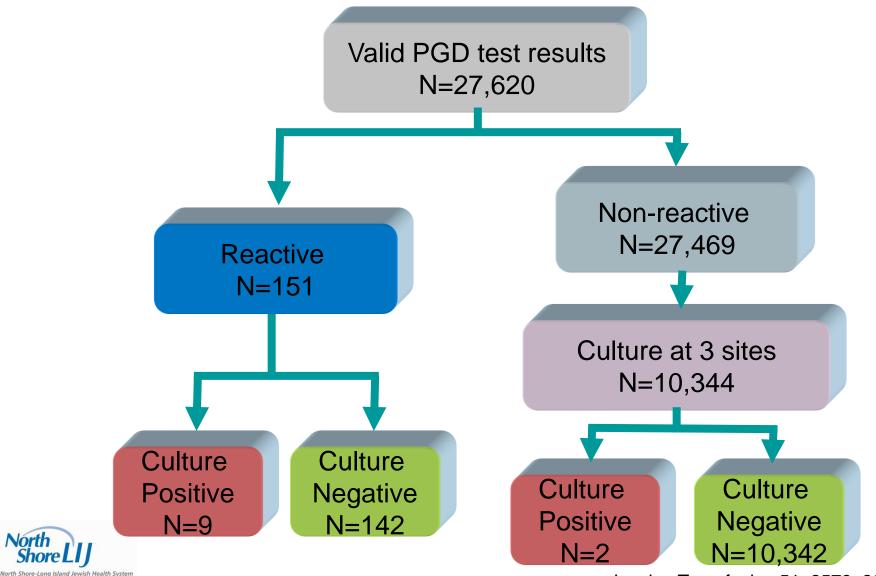
Jacobs MR, Good CE, Lazarus HM and Yomtovian RA. Clin Infect Dis 2008;46:1214-20

Bacterial Contamination Sampling Time Issues





Benjamin, Kline et al. Transfusion 2008


Multi-site Study of 27,682 PC with PGD[®] Assay

- Study performed at 18 study sites by over 160 technologists on apheresis units previously tested by culture negative (BacT/ALERT or eBDS) PC
- Doses tested by Platelet PGD test on day of issue (16 sites) or shortly after issue (2 sites) according to the manufacturer's directions
- Positive PGD results repeated in duplicate and plate cultures performed
- Concurrent aerobic plate cultures were also performed on 10,430 units at three of the study sites, with quantitation of positives at one study site
- Single-use, qualitative test
- Detects the presence of conserved bacterial surface cell wall antigens, lipoteichoic acid and lipopolysaccharide, using specific antibodies

Multi-site Study of 27,682 PC with PGD[®] Assay

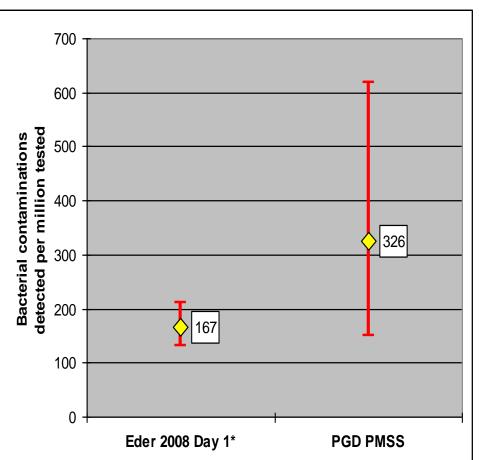
Jacobs: Transfusion 51: 2573: 2011

Platelet Bacterial Contamination – TP results

Bacterial species isolated by culture at issue	Age of unit (days)	Confirmation method*	Bacterial load (CFU/mI)**	Transfusion status
Bacillus sp; P. acnes	3	BC	NT	Not Tx
CoNS split collection	3	PC, GS	NT	Not Tx
CoNS 5	3	PC, GS	NT	Not Tx
Enterococcus faecalis	3	PC, GS	NT	Not Tx
CoNS; Peptostrep	4	PC, BC, GS	NT	Not Tx
CoNS	4	PC	NT	Not Tx
CoNS	5	PC, GS	1.3 x 10e6	Tx – no rxn
Bacillus sp.	5	PC, GS	1 x 10e7	Not Tx
CoNS	5	PC, GS	1.2 x 10e7	Tx – septic shock***

*BC = broth culture; PC = plate culture; GS = Gram stain; **NT = Not Tested for quantity ***documented bacteremia with same organism

Jacobs: Transfusion 51: 2573: 2011


PGD Detection Rates On Day of Release

Day 2 culture negative Apheresis Inventory – sampled on day 1

9/27,620 apheresis units PGD positive

- Rate of detection was 1/3,069 units (95% CI 1/6,711 - 1/1,617)
- Estimated 326 contaminated units per million units (95% CI 149-618)
- Based on 1.7 million LRAP units per year in the U.S., the estimated number of breakthroughs would be expected to be 554 per year (95% CI 253-1051)

- Start with 893/MM contaminated:
- Culture detects 150-200/MM
- POR detects
- Undetected
- ~ 192/MM

326/MM

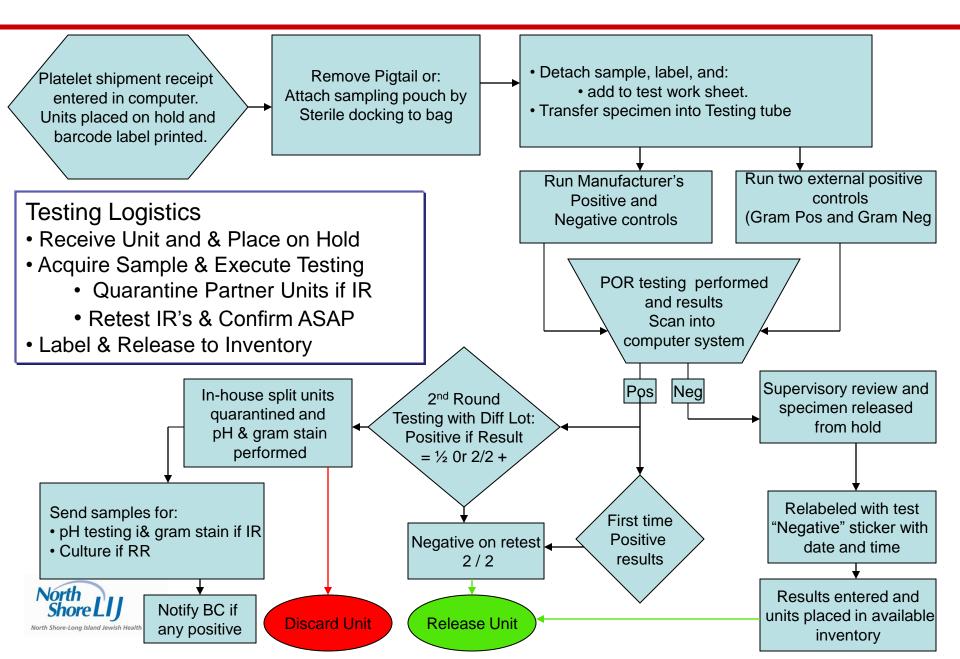
- Eder: Transfusion 49: 1554:2009
- Jacobs: Transfusion 51: 2573: 2011

PGD® PC Trial Outcomes

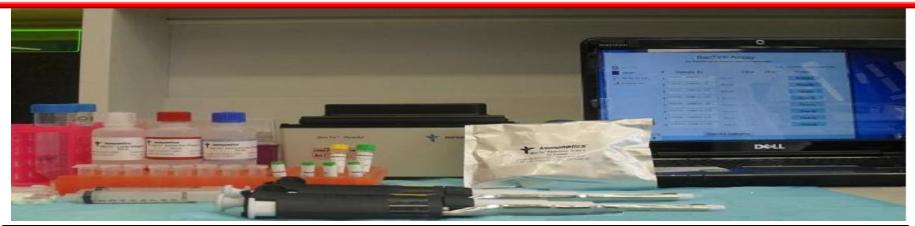
	Platelet Age (Days)			Tatal	
Description	≤2	3	4	≥5*	Total
Number Units Tested (% of Total Tested)	4,036 (15%)	8,375 (30%)	6,660 (24%)	8,549 (31%)	27,620
True positive PGD Test	0	4	2	3	9

- Bacterial contamination @ 1:3,069 doses (326/million; 95% CI 149-618/million)
- 7 of 9 PGD+ units showed Gram Stain + contamination (~10⁷ cfu)
- 2 false negatives detected in 10,424 doses (192/million) on DOR culture
- There were 142 PGD false positives (0.51%)
- Based on reaction rate in recipients transfused with >10⁵ CFU/mL:
 - This could prevent ~300 major Tx reactions & several fatalities/year

Operational Trial of PGD[®] SDP Testing


- NSUH participated in an 18 center evaluation study of a rapid bacterial point-of-care screening assay (PGD[®], Verax Biomedical)
- One of 3 sites that performed concurrent culture at issue.
- The PGD Test performed on day of receipt & daily thereafter.

Day Tested	# Tested	# IR /	# RR	% Specificity	% FP	pH < 6.8
DAY 1	2040	26	/ 10	99.5	1.3	6 / 15
DAY 2	291	0	0	NA	NA	NA


Of the 59% tested, 14% retested @ 48 hours, & 1% @ 72 hours.
Feasibility was confirmed with next steps identified as:

 Definition of 'acceptable' hold periods following testing
 Implementation of IT to track inventory testing status.
 Identification of the 'real' as opposed to 'reported' risk Vox Sang 101S; 170: 2011

Testing Logistics in Hospital Blood Bank

BacTx[®] Test Train & Sensitivity (510k Approved)

Species	# 1 Sensitivity	# 2 Sensitivity	Overall
Escherichia coli	5.1 x 10 ³	8.7 x 10 ³	8.7 x 10 ³
Pseudomonas aeruginosa	9.6 x 10 ³	5.0 x 10 ⁴	5.0 x 10 ⁴
Klebsiella oxytoca	6.8 x 10 ³	9.9 x 10 ³	9.9 x 10 ³
Serratia marcescens	5.8 x 10 ⁴	6.7 x 10 ³	5.8 x 10 ⁴
Propionibacterium acnes	7.2 x 10 ³	1.1 x 10 ³	7.2 x 10 ³
Staphylococcus aureus	2.1 x 10 ³	4.0 x10 ³	4.0 x 10 ³
Staphylococcus epidermidis	2.0 x 10 ³	2.4 x 10 ³	2.4 x 10 ³
Streptococcus agalactiae	3.6 x 10 ³	2.7 x 10 ⁴	2.7 x 10 ⁴
Clostridium perfringens	2.8 x 10 ³	4.5 x10 ³	4.5 x 10 ³
Bacillus cereus	1.3 x 10 ³	1.7 x10 ³	1.7 x 10 ³

Galloway-Haskins & Heaton: Transfusion 2011/2; Supp: Abstract

Bacterial Contamination Testing Standards

AABB standard 5.1.5.1 (effective March 2004)¹ The blood bank or transfusion service shall have methods to limit and detect bacterial contamination in all platelet components Apheresis - Collection facilities adopted culture - FDA cleared culture-based QC (BacT Alert & eBDS) - Culture at 24hrs, release 12-24hrs later WBD - Culture not practical for WBD units - Hospitals validated non FDA cleared tests AABB standard 5.1.5.1.1 (effective Jan 2011)² for WBDP Detection methods shall either be approved by the FDA or validated to provide sensitivity equivalent to FDA-approved methods. First High Profile Litigation affecting Hospital/Blood Center Testing and Recall Standards of Practice

Policies & Procedures pertinent to Transfusion Reaction

- 1. AABB Standards for Blood Banks, March 2003
- 2. AABB Interim Proposed Standard, Posted Feb 2010

3. <u>http://www.tampabay.com/incoming/hillsborough-girl-had-cancer-but-suit-pins-death-on-tainted-blood/1179600</u>

Policy Review

Issue	For action	Opposed to action
Clinical Issue ?	 Well described sepsis/death risk: Reports credible & conservative Actual sepsis ?? 10 X under-reported: Clinical significance hard to evaluate Increasingly G+ cocci - skin contaminant 	 None reported locally: Small reported fraction = perceived risk No standard-of-care & minimal litigation Sepsis symptoms unlinked to cause: Sick patients with many other issues MD's are used to high risk patients
Economic Question	 Reimbursement focused on outcomes Quality = purchaser selection criterion DRG rates affected by readmissions Culture already factored into unit cost: Maybe avoid BacT/Alert cost No studies available 	 BC's reluctant to reduce product cost:: Low direct cost not avoidable expense Hospital cost of sepsis is not reported Testing not the standard of practice: FDA & aaBB do not require it Low assessment of liability
Feasibility	NSUH participated in trial (no yield):Only tested routine unitsShowed feasibility in a study	 Manufacturing not Distribution: BC should Culture sensitivity Hospitals 'cannot' test completely
Options North Shore LUJ North Shore-Long Island Jewish Health System	 Test all PC pre-release: Test 'at-risk' patient's PC TPGD test reactions (define problem) 	Take no action:Await regulatory leadershipRequest BC's to improve capture rate

Policy Related Questions

• Clinical Questions:

- There is clinical evidence that Point-of-Release Testing is needed
- Feasibility Questions:
 - These tests are do-able in a Blood Bank Environment
- Inventory Questions raised:
 - Tested inventory can be maintained & could dating be extended ?
- Evaluations/studies that are needed
 - Larger culture samples & later sampling offer some improvement
 - Current data suggests that it would be less than equivalent
 - Affirmative studies are needed to define the test frequency interval

• Where we are today:

- Simple and effective Point-of-Release Testing is becoming available
 - aaBB/FDA workshop on 17th July to review evidence Vs. standards

