

Immunohematology Case Studies 2020 - 1

Lilian Castilho

Hemocentro Unicamp, Campinas, SP, Brazil Hospital Israelita Albert Einstein, São Paulo, Brazil castilho@unicamp.br

Clinical History

- 24- year-old male
- African descent
- Diagnosis: Sickle Cell Anemia
- Transfused with 2 red cell units at another hospital over 3 months ago
- Ordered 1 red cell unit in our hospital
- Hemoglobin: 8 g/dL, Hematocrit=23%

Serologic History

The following serological information was provided:

- ABO/Rh: Group O/RhD+
- DAT: Negative
- Antibody screen: Positive with the 3 cells tested
- Antibody identification: panaglutination with negative autocontrol
- Sample referred to reference laboratory for additional testing

Current Sample Presentation Data

Results in our reference laboratory

- ABO/Rh: Group O/RhD+
- DAT: negative
- Antibody Screen Method: LISS-IAT and enzyme treated RBCs using gel agglutination (Grifols)
- Antibody Screen Results: positive 2+ with all 3 cells tested in LISS-IAT and 3+ in Papain treated RBCs
- Antibody Identification Method: LISS-IAT and Papain treated RBCs in gel agglutination (Grifols)
- Antibody Identification Results: reactive 2+ in LISS-IAT and 3+ in Papain treated RBCs with all cells. Negative autocontrols

Panel identification

								DE		SEI	NA.	/ "		115		AL	^{/IA}	NA	Г									
					Rh	-hr				K	ell		Du	ffy	Ki	dd	Lev	Nis	Ρ1		Μ	NS		Luth	Xg	special	Res	ults
	RhPhenotype/	Fenótipo Rh	D	С	Е	с	е	C^{W}	К	k	Кр ^а	Jsa	Fy ^a	Fy ^b	Jka	Jkp	Le ^a	Le ^b	P_{1}	М	N	s	s	Lu ^a	Xg ^a	antigens	Liss	Enz
1	CCDee	R_1R_1	+	+	0	0	+	0	+	+	0	0	+	0	+	0	0	+	+	0	+	0	+	0	+		2+	3+
2	Ccddee	rír	0	+	0	+	+	0	0	+	0	nt	0	+	0	+	+	0	+	0	+	0	+	0	+		2+	3+
3	ccDee	R _o r	+	0	0	+	+	0	0	+	0	nt	+	+	+	0	0	+	+	+	0	+	0	0	+		2+	3+
4	ccddEe	r´´r	0	0	+	+	+	0	0	+	+	nt	0	+	+	+	+	0	+	+	+	+	+	0	0	Co(b+)	2+	3+
5	CCDEE	R_2R_2	+	0	+	+	0	0	0	+	0	nt	+	+	0	+	0	+	+	+	+	+	0	0	0		2+	3+
6	C ^w CDee	$R_1^{W}R_1$	+	+	0	0	+	+	0	+	0	nt	0	+	+	0	0	+	+	+	+	0	+	0	+		2+	3+
7	ccddee	rr	0	0	0	+	+	0	0	+	0	nt	0	+	0	+	0	0	0	+	0	+	+	0	+		2+	3+
8	ccddee	rr	0	0	0	+	+	0	0	+	+	nt	0	+	+	0	+	0	+	+	0	+	0	0	+		2+	3+
9	ccddee	rr	0	0	0	+	+	0	0	+	0	nt	+	0	+	0	0	+	+	0	+	0	+	0	+		2+	3+
10	ccddee	rr	0	0	0	+	+	0	0	+	0	0	+	0	0	+	0	+	+	0	+	+	+	0	+		2+	3+
11	CCDee	R_1R_1	+	+	0	0	+	0	0	+	0	nt	0	+	0	+	0	+	0	+	0	+	0	+	0		2+	3+

IDENTICEDA / IDENTICEDA DIANA D

Similar strength of antibody reactivity with all cells associated with negative DAT and autocontrols suggest the presence of an alloantibody to a high prevalence antigen resistant to papain

Further work

Selected cell panel using, LISS, papain, α-Chymotrypsin and DTT:

					SE	RAS	SCA	N I	DIA	NA	4	/ S	ER	ASC	CAN	D	IAN	NA 4	4P/	SE	RA	SC/	٩N	DI	AN/	A Di ^a				
					Rh	-hr				К	ell		Du	ffy	Ki	dd	Le	wis	P1		Μ	NS		Luth	Xg	special	Res	ults	_	
	RhPhenotype/	Fenótipo Rh	D	С	Е	с	e	Cw	К	k	Кр ^а	Jsª	Fy ^a	Fy ^b	Jk ^a	Jk ^b	Le ^a	Le ^b	P_1	М	N	S	s	Luª	Xg ^a	antigens	Liss	Enz		α-Chyn
L	CCDee	$R_1^{W}R_1$	+	+	0	0	+	+	0	+	+	nt	0	+	+	+	0	+	0	+	0	+	+	0	0		2+	3+	0	0
П	CCDEE	R_2R_2	+	0	+	+	0	0	0	+	0	nt	+	+	0	+	+	0	+	0	+	0	+	0	+		2+	3+	0	0
Ш	ccddee	rr	0	0	0	+	+	0	+	+	0	0	0	+	0	+	0	+	+	0	+	0	+	0	+		2+	3+	0	0
IV	ccddee	rr	0	0	0	+	+	0	0	+	0	0	+	0	+	0	0	+	+	+	+	+	0	0	+		2+	3+	0	0
Di	CcDdee	rr	0	0	0	+	+	0	0	+	0	0	+	0	+	+	0	+	+	0	+	+	0	0	+	Di(a+)	2+	3+	0	0
	Autocontrole														0	0	-	-												

DTT and α-Chymotrypsin-treated RBCs were non-reactive

Effect of proteases and thiol reagents on selected antigens

Ficin/Papain	Trypsin	α-Chymotrypsin	DTT/2ME/AET	Antigen				
Sensitive	Sensitive	Sensitive	Resistant	Bpª; Ch/Rg; XG				
Sensitive	Sensitive	Sensitive	Sensitive	IN; JMH				
Sensitive	Sensitive	Resistant	Resistant	M, N, EnªTS; Ge2, Ge4				
Sensitive	Resistant	Sensitive	Resistant	'N'; Fy ^a , Fy ^b				
Variable	Resistant	Sensitive	Resistant	S, s				
Variable	Resistant	Sensitive	Weakened or Sensitive	ΥT				
Sensitive	Resistant	Resistant	Resistant	EnªFS				
Resistant	Sensitive	Sensitive	Weak or Sensitive	LU, MER2				
Resistant – Papain	Sensitive	Sensitive	Sensitive	KN				
Weakened or sensitive – Ficin								
Resistant	Sensitive	Weakened	Sensitive	DO				
Resistant	Resistant	Sensitive	Weakened	CROM				

Most likely Blood Group Systems implicated: YT, LU, KN, DO, CROM Antigens DTT and α -Chymotrypsin sensitive and Papain resistant

Genotyping ID-CORE XT platform (Grifols)

Sistema de grupo sanguíneo	Alelos analisados	Resultado de genótipo	Antigenos (ISBT)	Resultado de fenótipo previsto
cungumoo	RHCE*ce			
	RHCE*Ce		C (RH2)	+
	RHCE*cE			
	RHCE*CE		E (RH3)	0
	RHCE*CeCW			
	RHCE*ceCW		c (RH4)	+
	RHCE*CECW			
	RHCE*ceAR		e (RH5)	+
	RHCE*CeFV			
Rh	RHCE*CeVG	RHCE*ce, RHCE*Ce	CW (RH8)	0
	RHCE*cEFM			
	RHCE*ce[712G]		V (RH10)	0
	RHCE*ce[733G]			
	RHCE*Ce[733G]		hrS (RH19)	+
	RHCE-D[5, 7]-CE		10 (0100)	
	RHCE*ce[733G,1006T]		VS (RH20)	0
	RHCE*cE[712G,733G]		h-D (DU24)	+
	RHD*r's-RHCE*ce[733G,1006T]		hrB (RH31)	· ·
			K (KEL1)	0
	KEL*K_KPB_JSB		k (KEL2)	+
Kell	KEL*k_KPB_JSB	KEL*k_KPB_JSB	Kpa (KEL3)	0
Ken	KEL*K_KPA_JSB	KEE K_K B_33B	Kpb (KEL4)	+
	KEL*K_KPB_JSA		Jsa (KEL6)	0
			Jsb (KEL7)	+
	JK*A		Iko (IK1)	+
	JK*B		Jka (JK1)	· ·
Kidd	JK*B_null(871C)	JK*A, JK*B		
	JK*B_null(IVS5-1a)		Jkb (JK2)	+
	JK*A_null(IVS5-1a)			
	FY*A FY*B		Eve (E)(4)	+
			Fya (FY1)	· ·
Duffy	FY*B_GATA FY*B[265T]_FY*X	FY*A, FY*B		
	FY*A[265T]_FY*X		Fyb (FY2)	+
	EV*A GATA		1 90 (1 12)	
	GYPA*M	GYPA*N	M (MNS1)	0
	GYPA*N	GIFAN	N (MNS2)	+
	GYPB*s		S (MNS3)	0
MNS	GYPB*S		s (MNS4)	+
	GYP.Mur	GYPB*s	5 (WIN04)	
	GYPB*deletion		U (MNS5)	+
	GYPB*S_null(230T) GYPB*S_null(IVS5+5t)		Mia (MNS7)	0
Diama	DI*A	0/40	Dia (DI1)	0
Diego	DI*B	DI*B	Dib (DI2)	+
	DO*A		Doa (DO1)	0
Dombrock	DO*B	DO*B	Dob (DO2)	+
	DO*B_HY DO*A_JO		Hy (DO4) Joa (DO5)	+
	CO*A		Coa (CO1)	+
Colton	CO*B	CO*A	Cob (CO2)	0
Cartwright	YT*A	YT*A	Yta (YT1)	+
Cartwright	YT*B	11 A	Ytb (YT2)	0
Lutheran	LU*A	LU*B	Lua (LU1)	0 +
	LU*B	l	Lub (LU2)	+

Genotyping Results

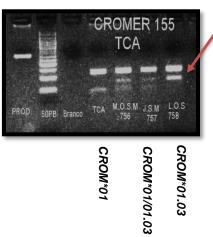
Genotype: RHCE*ce/RHCE*Ce, KEL*2/KEL*2, KEL*4/KEL*4, KEL*7/KEL*7, JK*1/JK*2, FY*1/FY*2, GYPA*2/GYPA*2, GYPB*4/GYPB*4, GYPB*5, DI*B/DI*B, DO*2/DO*2 , DO*4, DO*5, CO*1/CO*1, LU*2/LU*2

Predicted phenotype : C+E-c+e+, K-k+, Kp(a-b+), Js(a-b+), Jk(a+b+), Fy(a+b+), M-N+,S-s+, U+, Mi(a-), Di(a-b+), Do(a-b+), Hy+, Jo(a+), Co(a+b-), Yt(a+b-), Lu(a-b+)

No negative results for high prevalence antigens in DO, YT and LU systems

Further Antibody Investigations

High prevalence antigen negative RBCs tested in a selected cell panel (Tc^a, Hy, Jo^a, Gy^a, Yt^a, Lu^b, Kn^a)


D	С	E	С	е	К	Fya	Fy ^b	Jka	Jkp	Μ	Ν	S	S	U	Tc ^a	Ну	Jo ^a	Gy ^a	Yt ^a	Lu ^b	Kn ^a	LISS	ENZ
+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	+	-	-	-	-	-	-	2+	3+
+	+	+	+	+	0	0	0	+	0	+	+	0	+	+	0	-	-	-	-	-	-	0	0
+	0	0	+	+	0	0	0	+	0	+	+	+	+	+	-	-	-	-	-	-	-	2+	3+
+	0	0	+	+	0	0	0	+	+	+	+	0	+	+	-	-	-	-	-	-	-	2+	3+
+	+	0	0	+	0	0	+	+	0	+	0	+	+	+	-	0	0	0		+	+	2+	3+
+	+	0	+	+	0	+	+	+	+	+	+	0	+	+	+	+	+	+	0	+	+	2+	3+
0	0	0	+	+	0	+	0	+	+	+	0	0	+	+	+	+	+	+	+	0	+	2+	3+
+	+	0	+	+	0	+	0	0	+	+	+	0	+	+	+	+	+	+	+	+	0	2+	3+

Antibody is		Papain	α- Chymo	DTT
Antibody is	YT	+/-	-	+/-
with Tc(a-)	DO	+	+/-	-
RBCs	CROM	+	-	+/-
GPI-linked proteins	JMH	-	-	-
bioteins	PATIENT	+	-	-

Tc^a (CROM2) Phenotyping and Genotyping Results

- Phenotyping performed with one anti-Tc^a from our rare serum collection and one anti-Tc^a kindly provided by Dr Thierry Peyrard showed negative results with the patient RBCs (CROM:-2,3)
- Genotyping performed by PCR-RFLP on DNA sample from the patient confirmed phenotyping results

Patient sample

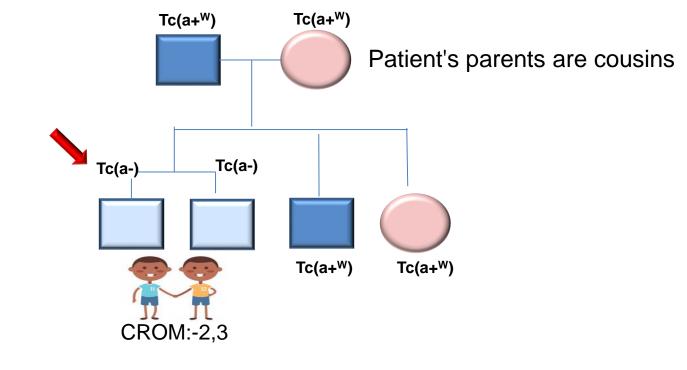
Further Serological Work

- Allogeneic adsorptions were performed in order to rule out additional common alloantibodies hidden by the alloantibody to a high prevalence antigen
- Three cells were employed: R₂R₂, K-, S- R₁r, K+, S-R₁r, K-, S+
- Allogeneic adsorptions: After the third adsorption the samples were tested in the panel
- Results of the allogeneic adsorption
 - Panel with three times-adsorbed serum with the 3 cells removed the high prevalence antibody and it was possible to rule out anti-E, -K and -S

Next Steps

The patient serum was crossmatched with RBCs from his siblings

Crossmatch results


		GEL TEST						
SIBL	.INGS	LISS-IAT	PAPAIN					
Father	0-	0	0					
Mother	0+	Weak	0					
Sister	0+	0	0					
Brother	0+	0	0					
Twin	0+	0	0					

Serological results were compatible with all sibling's RBCs but not his mother's RBCs with a weak reaction in LISS-IAT

Further Work

Tc^a (CROM2) phenotyping results of the patient's siblings

Only the proband and his twin were Tc(a-) RBCs from the other siblings showed a weak reactivity with anti-Tc^a

Further Work

CROM2 genotyping results of the patient's siblings

Siblings	CROM2 Genotypes	Predicted phenotypes
Father	CROM*01/CROM*01.03	Tc(a+b+) or CROM:2,3
Mother	CROM*01/CROM*01.03	Tc(a+b+) or CROM:2,3
Sister	CROM*01/CROM*01.03	Tc(a+b+) or CROM:2,3
Brother	CROM*01/CROM*01.03	Tc(a+b+) or CROM:2,3
Twin	CROM*01.03/CROM*01.03	Tc(a-b+) or CROM:-2,3
Patient	CROM*01.03/CROM*01.03	Tc(a-b+) or CROM:-2,3

Genotype results showed that only the proband and his twin were *CROM*01.03* homozygous. The other siblings were heterozygous confirming the phenotyping results.

Conclusions

- Patient's serum contains an IgG antibody to the high prevalence Tc^a (CROM2) antigen confirmed by serological and molecular studies
- Tc^a (CROM2) phenotyping showed that this antigen is weakly expressed in Tc(a+b+) heterozygous cells
- As anti-Tc^a (CROM2) can be implicated in transfusion reaction, Tc^a (CROM2) phenotyping and/or genotyping should be performed before the release of the compatible red blood cell unit

Summary of Case Challenges

- This case represents a rare example of anti-Tc^a (CROM2) sensitive to DTT200mM, reactive with Tc(a+b-) homozygous cells but weak or non-reactive with Tc(a+b+) heterozygous cells identified in a Sickle Cell Disease patient
- Siblings of the patient were tested for compatibility but only his twin was compatible. Unfortunately he has also sickle cell anemia and can not donate blood to the patient
- This case reminds that crossmatch testing with a low-titer antibody can be negative on heterozygous cells, while the antibody can be detectable upon an antibody screening test
- The patient has not yet been transfused and is being monitored
- MMA has been suggested to assess the clinical significance of the antibody

of Blood Transfusior

- High prevalence antigen negative individuals may result from consanguineous marriages
- The use of different enzymes and thiol reagents is very helpful in the identification of antibodies to high prevalence antigens
- Antibodies occasionally do not behave as expected
- For very rare specificities, the characteristics described are based on limited observations
- Use the features described as a GUIDE and not as a RULE
- The correct determination of an antibody requires competence in manual serological techniques and molecular tests

ISBT Terminology of the System

Cromer Blood Group System

- ISBT symbol: CROM (021)
- Gene name: *CROM*
- ISBT symbol (number) for Tc^a antigen : CROM2 (021002 0r 21.2)
- The reference allele is CROM*01 encoding CROM2
- Tc(a-b+) or CROM:-2,3: allele name is CROM*01.03

Cromer Blood Group System

- Cromer blood group system consists of 17 antigens carried on a GPIlinked glycoprotein (DAF, CD55) that consists of 481 amino acids.
- The system was named after the first antigen in the system, Cr^a
- The gene encoding Cromer antigens is named CROM (DAF), located in Chromosome 1q32.2 and organized in 11 exons distributed over 40kbp of gDNA
- The reference allele is *CROM*01*
- Tc^a (CROM2) is a high frequency antigen with an occurrence of 100% in most populations and >99% in Blacks.
- Antithetical antigens: Tc^b (CROM3) and Tc^c (CROM4)
- All Tc(a-) Blacks are Tc(b+); Tc(a-) Caucasians are Tc(c+)
- The molecular basis of CROM:-2,3 is c.155G>T in exon 2 (p.Arg52Leu)
- Anti-Tc^a (CROM2) is a rare antibody, IgG and not involved in HDFN but can be implicated in transfusion reactions

References

1. Kowalski MA et al. Hemolytic transfusion reaction due to anti-Tc(a). Transfusion 1999; 39:948-950

2. Lublin DM. et al. Molecular basis of Cromer blood group antigens. Transfusion 2000; 40:208-213

3. Storry JR, Reid ME, Yazer MH. The Cromer blood group system: a review. Immunohematology 2010; 26:109-118.

4. Daniels GL. Human Blood Groups, 3rd ed. Oxford, UK: Wiley-Blackwell, 2013.

5. Reid ME, Lomas-Francis C, Olsson ML. The Blood Group Antigen FactsBook, 3rd ed. San Diego, CA, Elsevier, 2012.

Website:

International Society of Blood Transfusion (ISBT) - www.isbtweb.org