

Immunohematology Case Study 2017 - #7

Cinzia Paccapelo

Immunohematology Reference Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milan, Italy c.paccapelo@policlinico.mi.it

Clinical History

Medical History:

A 30 years old Caucasian female hospitalized for dorsal meningioma

Transfusion history: no history of recent transfusion. Patient received 2 units of red blood cells approximately five years ago during a gynecologic surgery

Pregnancy history: no history of pregnancy

Serologic History

- Routine serological workup was performed
- The referring hospital transfusion service observed that antibody screen and identification were positive with all cells, DAT negative
- Due to limited resources, a sample was submitted to Immunohematology Reference Laboratory at Policlinico Hospital of Milan (Italy) for further testing

Current Sample Presentation Data

ABO/Rh/K: A Rh positive, ccee, kk

DAT: negative

Antibody Screen Method: Indirect Antiglobulin Test (IAT) using Column Agglutination Technology (CAT) polyspecific (Biovue, Ortho Clinical Diagnostics)

Antibody Screen Results: 2+ with all tested cells

Antibody Identification Method: IAT using CAT-Polyspecific, polyethylene glycol (PeG), LISS and ficin-treated cells

Antibody Identification Preliminary Results: all cells positive in IAT with untreated and ficin-treated red cells

Antibody Identification Preliminary Results

	D	С	С	Е	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	S	s	CAT	PEG
1	+	+	0	+	+	0	0	+	0	+	0	+	0	+	+	+	+	0	+	2+	2+
2	+	+	0	0	+	+	0	+	+	0	+	0	0	+	0	+	+	0	+	2+	2+
3	+	0	+	+	0	0	0	+	0	+	0	+	0	+	+	+	+	0	+	2+	2+
4	+	0	+	0	+	0	0	+	0	0	+	0	+	0	+	+	+	0	0	2+	2+
5	0	+	+	0	+	0	0	+	+	0	+	0	0	+	+	+	+	0	+	2+	2+
6	0	0	+	+	+	0	0	+	+	+	0	+	0	+	+	+	+	+	+	2+	2+
7	0	0	+	0	+	0	+	+	+	0	0	+	0	+	0	+	0	+	0	2+	2+
8	0	0	+	0	+	0	0	+	+	0	+	0	0	+	+	0	+	0	+	2+	2+
9	0	0	+	0	+	0	0	+	0	+	+	+	+	0	0	+	+	0	+	2+	2+
10	+	+	0	0	+	0	+	+	+	+	0	+	+	0	+	0	+	0	+	2+	2+
11	0	0	+	0	+	0	0	+	0	+	+	+	0	0	+	+	+	0	+	2+	2+
AC	+	0	+	+	+	0	0	+	0	+	+	+	0	+	+	+	0	+	+	0	0

AC: autocontrol

Antibody Identification Preliminary Results

	D	С	С	Е	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	S	s	LISS	FICIN
1	+	+	0	+	+	0	0	+	0	+	0	+	0	+	+	+	+	0	+	2+	2+
2	+	+	0	0	+	+	0	+	+	0	+	0	0	+	0	+	+	0	+	2+	2+
3	+	0	+	+	0	0	0	+	0	+	0	+	0	+	+	+	+	0	+	2+	2+
4	+	0	+	0	+	0	0	+	0	0	+	0	+	0	+	+	+	0	0	2+	2+
5	0	+	+	0	+	0	0	+	+	0	+	0	0	+	+	+	+	0	+	2+	2+
6	0	0	+	+	+	0	0	+	+	+	0	+	0	+	+	+	+	+	+	2+	2+
7	0	0	+	0	+	0	+	+	+	0	0	+	0	+	0	+	0	+	0	2+	2+
8	0	0	+	0	+	0	0	+	+	0	+	0	0	+	+	0	+	0	+	2+	2+
9	0	0	+	0	+	0	0	+	0	+	+	+	+	0	0	+	+	0	+	2+	2+
10	+	+	0	0	+	0	+	+	+	+	0	+	+	0	+	0	+	0	+	2+	2+
11	0	0	+	0	+	0	0	+	0	+	+	+	0	0	+	+	+	0	+	2+	2+
AC	+	0	+	+	+	0	0	+	0	+	+	+	0	+	+	+	0	+	+	0	0

AC: autocontrol

Challenge with the Current Presentation

- All cells are positive independently of the antigen patterns
- The autocontrols (AC) are negative
- The most frequent causes for the "all cells positive/autocontrols negative" pattern are:
 - Multiple antibodies to common antigens
 - An antibody to an antigen of high prevalence
 - An antibody to reagent components
- The laboratory suspected an alloantibody to a high-prevalence antigen due to the similar strength and phases for all the red cells, DAT and AC negative

Challenge with the Current Presentation

- Antibodies to a high-prevalence antigens can be identified by:
- typing the patient's red cells with antisera to high-prevalence antigens
- testing selected red cells of rare phenotypes
- testing reagent red cells sample that match the patient's phenotype in order to rule out the presence of a complex mixture of antibodies of common specificities
- The laboratory performed further tests

Further Serologic Work

The extended phenotype for common red blood cell antigens and other rare high frequency antigens was investigated, with the following results:

Antigens	Serology	Antigens	Serology	Antigens	Serology
Cw	0	s	+	Lu ^b	+
K	0	Le ^a	0	PP₁P ^k	+
k	+	Leb	0	U	+
Jk ^a	+	P1	+	Vel	0
Jkb	+	Kp ^b	+	Yt ^a	+
Fy ^a	0	Gya	+	Coa	+
Fy ^b	+	Lan	+		
S	+	Ge2	+		

Further Serologic Work

Testing Vel negative red cells:

	D	С	С	Е	е	Cw	K	k	Fyª	Fy ^b	Jk ^a	Jk ^b	Leª	Le ^b	P ₁	М	N	s	s	Vel	CAT- AS
ID 411623	+	+	0	0	+	0	0	+	0	+	+	+	/	/	/	/	/	0	+	0	0
Cell 12 Panel RC0016S DRKBSD	+	0	+	0	+	0	0	+	0	+	+	+	0	+	+	+	0	0	+	0	0

- Antibodies to high-prevalence antigens may mask the concomitant presence of additional antibodies to common antigens
- Exclusion of additional antibodies is an important step in the interpretation process and must be performed to ensure proper identification of all of the antibodies present
- Patient's serum must be tested against a sufficient number of reagent red cell samples that express the antigens that are negative on patient's red cell (ideally 2 for antigens with dosage effect)

Further Testing Results and Interpretations

- To exclude the presence of additional alloantibodies, allogenic adsorption was performed with a cell carrying a patient's complementary phenotype for the most common red cell antigens: rr, K-,Fy(a+b-), Vel+
- Adsorptions (x2) were made at 37° C without additive

	D	С	С	E	е	Cw	K	k	Fya	Fyb	Jka	Jkb	Lea	Leb	P1	M	N	s	s	CAT
1	+	0	+	+	0	0	0	+	+	0	0	+	0	+	W	+	+	0	+	0
2	+	0	+	+	0	0	0	+	+	0	+	+	+	0	+	0	+	+	+	0
3	0	0	+	0	+	0	0	+	0	+	+	0	0	+	+	0	+	0	+	0
4	0	0	+	0	+	0	0	+	0	+	0	+	0	+	0	0	+	+	0	0
5	+	+	0	0	+	+	0	+	+	+	+	+	0	+	0	+	0	0	+	0
6	+	0	+	+	0	0	0	+	0	0	+	0	+	0	+	+	0	0	+	0
7	+	0	+	+	0	0	0	+	+	0	+	0	+	0	+	+	0	+	+	0
8	+	+	+	0	+	0	0	+	+	+	+	+	0	+	0	+	+	+	+	0
9	+	+	+	+	+	0	0	+	0	0	0	+	0	+	+	+	+	+	+	0
10	+	+	0	0	+	+	0	+	0	+	+	+	+	0	+	+	0	0	+	0
11	+	+	0	0	+	+	+	+	+	+	+	+	+	0	+	+	0	0	+	0
12	+	0	+	+	0	0	0	+	0	+	0	+	0	+	+	+	0	+	0	0
13	0	0	+	0	+	0	+	+	+	0	+	0	0	+	+	+	+	+	+	0

The Vel system (ISBT number 34)

- Vel antigen was recognized in 1952 by Sussman and Miller
- Anti-Vel antibodies are usually responsible for severe and acute hemolytic transfusion reactions but rarely cause significant hemolytic disease of the fetus and newborn
- The prevalence of Vel- individuals is estimated at 1 in 4,000 in Europe, but the prevalence is somewhat higher (1 in 1,700) in northern Scandinavia
- Serologic screening for the Vel- phenotype is complicated. Some individuals appear to express very low levels of the Vel antigen that can be challenging to detect, especially since anti-Vel does not work well in adsorption-elution studies

The Vel system (ISBT number 34)

- The transmembrane protein SMIM1 was identified as carrying the Vel antigen
- The SMIM1 gene is located on the chromosome 1 and is composed of four exons
- Vel negative phenotype is caused by the homozygous presence of a 17-bp deletion in exon 3 of SMIM1 gene (SMIM1*64_80-del allele) that completely abolishes the expression of the SMIM1 protein
- The allele frequency of the *SMIM1*64_80-del* allele is 1,46% in the Caucasian population, 0,56% in the African black population

The Vel system (ISBT number 34)

- Weak expression of the Vel antigen is most often caused by the heterozygous presence of SMIM1*64_80-del allele in combination with a wild type allele
- Variation in Vel expression levels is also related to two single heterozygous missense mutations, at the same nucleotide position of SMIM1 resulting in a different aminoacid substitutions (c.152T>A encoding p.Met51Lys and c.152T>C encoding p.Met51Arg)

Haer-Wigman L, Stegmann T, Solati S & al. Transfusion 2015;55;1457–1466

Further Work

Searching for compatible blood:

- At that time, no Vel negative blood was available and autologous donation was not possible
- Family study can be useful:
 - The absence of high-prevalence antigens is usually associated with the inheritance of the same rare recessive blood group gene from each heterozygous parent
 - Siblings are much more likely to have the rare blood type (25%) than the general population

Parents and brother were phenotyped and genotyped for Vel antigen:

	Serology	Molecular Biology
Mother	Vel positive	heterozygous SMIM1*64_80-del allele
Father	Vel positive	heterozygous SMIM1*64_80-del allele
Brother	Vel negative	homozygous SMIM1*64_80-del allele

Updated Clinical Information

- No autologous units were available
- No units were available in our inventory but possible matches were detected when consulting the International Rare Donor Panel
- No transfusion support was required

Conclusions

- Emergency blood transfusion in alloimmunized patients with a rare blood type is a challenge
- The role of IRL in identifying rare antibodies and in finding compatible blood for a rare phenotype is very relevant
- If the clinical situation allows, autologous RBC transfusion should be considered for patients with rare phenotypes

Lessons Learned by the Case

- The reaction pattern of the antibody identification gives important information
- The ability to identify an antibody to a highprevalence antigen depends on the "rare" cells and antisera available in a laboratory
- Family members are a potential source of rare blood when rare blood is needed

References

- Technical Manual Eighteenth edition AABB
- Geoff Daniels. Human Blood Groups. Third Edition Wiley-Blackwell
- Marion E. Reid and Christine Lomas-Francis. Blood Group Antigens and antibodies: a guide to clinical relevance and technical tips. SBB Books New York
- Homozygosity for a null allele of SMIM1 defines the Vel-negative blood group phenotype. Storry JR and al. Nat genet 2013 May; 45(5): 537-41.
- Disruption of SMIM1 causes the Vel-blood type. Ballif BA and al. EMBO Mol Med. 2013 May; 5(5): 751-61
- SMIM1 underlies the Vel blood group and influences red blood cell traits.
 Cvejic A and al. Nat Genet. 2013 May; 45(5):542-5