Key steps to improve quality of plasma for further processing

Online Workshop
Working Party for Global Blood Safety (GBS) of ISBT
Tuesday 21 September

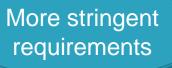
Vee Armstrong

No Disclosure

I have no actual or potential conflict of interest in relation to this congress or this presentation

Background

Plasma is a component for transfusion or for fractionation, prepared either from whole blood or from plasma collected by apheresis, frozen within a specified period of time and to a temperature that adequately maintains the protein levels


*Modified from Council of Europe Guide to the preparation, use and quality assurance of blood components

Background

Plasma is a component for transfusion or for fractionation, prepared either from whole blood or from plasma collected by plasmapheresis, frozen within a specified period of time and to a temperature that adequately maintains the protein levels

- Plasma for fractionation is intended for recovery of either:
 - labile proteins (coagulation factors)
 - non-labile proteins

Consequences for many Blood Establishments (BEs) in low & middle income countries (LMICs):

- Limited resources are directed towards manufacture of:
 - red cell concentrates
 - platelets predominantly whole blood derived, occasionally single donor via plateletpheresis
 - small volume of fresh frozen plasma for clinical use
- Volume of unused residual plasma from whole blood or plateletpheresis can be significant

- Unused residual plasma does not meet quality & safety standards for fractionation discarded
- Drives up costs:
 - purchase of plasma-derived medicinal products (PDMPs)
 - wastage of plasma
- BEs in LMICs that plan to utilise residual plasma as starting material for fractionation must improve the quality & safety of their plasma

- Improvements need to be made across the whole manufacturing process:
 - Donor selection
 - Collection whole blood & plasmapheresis
 - Processing
 - Testing
 - Handling, storage & transport
 - Quality Assurance/Quality Control (QA/QC)

Good Manufacturing
Practice (GMP)

Quality Management
System + Manufacturing
Principles

GMP

- Implementation of GMP is essential
- Sets out requirements for:
 - organisational & manufacturing responsibilities
 - good documentation systems & records (traceability)
 - staff training & competency
 - ensuring qualification &/or validation of:
 - materials
 - equipment
 - processes
 - facilities
 - performance monitoring & improvements

GMP

- GMP establishes a quality framework for BEs that should be applied to all blood collection activities
- Implementation therefore improves the safety & quality of all components manufactured by the BE, including other "fresh" plasma components eg:
 - pathogen-reduced plasma
 - standard & mini-pool SD-cryoprecipitate
 - mini-pool IgG
- In addition to GMP, BEs should select an appropriate Standard that sets out specifications for the components produced

Standards

- Specifications for plasma for fractionation are set by fractionator
- Based on international Standards such as:
 - European Pharmacopoeia Human plasma for fractionation
 - European Medicines Agency Guideline on plasma-derived medicinal products
 - FDA 21 CFR 640.30 & 640.60 Plasma; Source Plasma

Quality & Safety Improvements

Donor selection

Only a carefully selected, healthy donor who, as far as can be ascertained after medical examination, laboratory blood tests and a study of the donor's medical history, is free from detectable agents of infection transmissible by plasma-derived medicinal products may be used. *

* European Pharmacopoeia

Donor selection

Only a carefully selected, healthy donor who, as far as can be ascertained after medical examination, laboratory blood tests and a study of the donor's medical history, is free from detectable agents of infection transmissible by plasma-derived medicinal products may be used. *

* European Pharmacopoeia

Donor testing

- Every donation from every donor should be screened for transfusion transmissible infections
- At a minimum, these should include:
 - antibodies to HIV-1 & HIV-2
 - hepatitis B surface antigen
 - antibodies to hepatitis C virus
- Fractionators may require additional testing to be performed – these will be specified in the contract

Collection

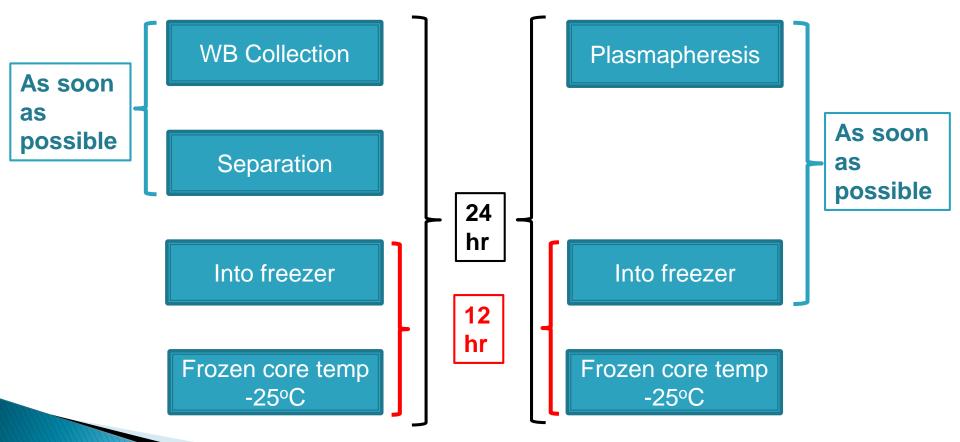
- Risk of bacterial contamination:
 - venepuncture for WB & plasmapheresis collections
 - connection of blood packs/reagents for plasmapheresis
 - contaminated work surfaces
- Prevention of contamination:
 - validated arm disinfectant & procedure
 - integrated collection packs CLOSED SYSTEM
 - regular cleaning of surfaces

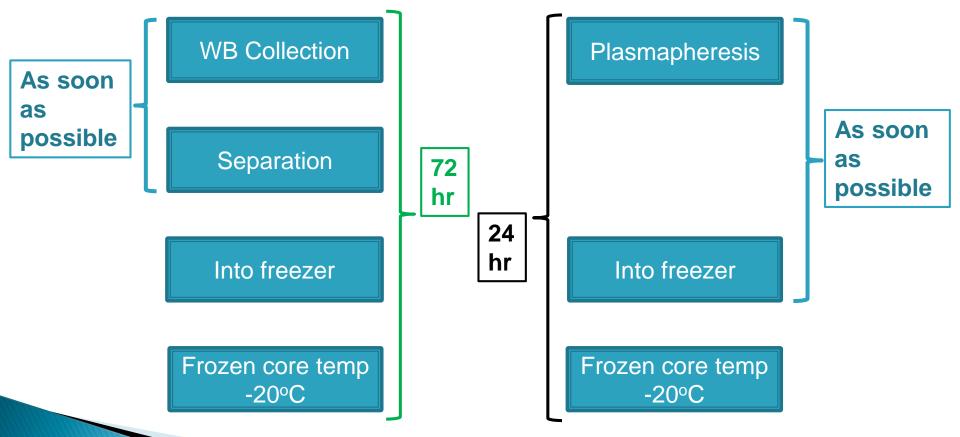
Collection

- Whole blood (WB) collection process should result in a donation that is:
 - well mixed with no clots
 - correct volume with no under- or over-dilution
 - timed to ensure appropriate use of plasma
- Automated blood mixer for WB collection:
 - mixes collection pack continuously
 - calculates volume from weight, clamps off blood flow at target
 - records time of collection

Collection

- Plasmapheresis collection process key factors:
 - qualified machines
 - integrated collection system (packs)
 - controlled rate of flow
 - control over use of saline vs anticoagulant
 - validated process
- Transport of WB & plasma to Processing department:
 - avoid delays
 - maintain temperature


Need to monitor time & temperature


- The "processing" step includes:
 - centrifugation of WB
 - separation of plasma from red cells +/- platelets
 - freezing of plasma (from WB or plasmapheresis)
- The process should result in plasma that:
 - is free from microbial contamination
 - has minimal cellular contamination
 - has optimal levels of coagulation factors or non-labile proteins (depending on intended PDMP)

Processing times for labile (coagulation) proteins*:

Processing times for non-labile proteins*:

- Therefore key factors for Processing (1):
 - traceability

- controlled work environment
- closed blood pack system
- regular cleaning all surfaces

Ensures timeframes met for processing, freezing

Ensures optimal handling temperature

Reduce risk of microbial contamination

- Key factors for Processing (2):
 - use of reliable equipment:
 - centrifuges
 - rapid freezer
 - heat sealers
 - sterile docking equipment

Equipment:

- Qualified & validated
- Regularly:
 - Serviced
 - Calibrated
 - Cleaned
 - Performance monitored

- Automated blood separator:
 - ensures consistency of plasma quality

Handling, storage & transport

- Processes for handling, storage & transport of plasma should ensure that:
 - traceability is maintained
 - integrity & protein levels are not compromised
 - risk of microbial contamination is minimised
 - pack is not damaged or breached at any stage
 - stored plasma is secure

Handling, storage & transport

- Key factors for handling, storage & transport (1):
 - controlled environment
 - regular cleaning of all work surfaces including freezers & transport containers
 - careful handling or use of padded packets during transport of frozen plasma (brittle)
 - security of storage:
 - restricted access to freezers
 - use of quarantine facilities until all acceptance testing is complete
 & plasma is "released"

Handling, storage & transport

- Key factors for handling, storage & transport (2):
 - use of reliable equipment:
 - storage freezers
 - transport containers for WB or plasma to processing
 - transport containers for frozen plasma from storage to fractionator
 - Dataloggers for monitoring
 Temperature during transport

Equipment:

- Qualified & validated
- Regularly:
 - Serviced
 - Calibrated
 - Cleaned
 - Performance monitored

QC testing & monitoring

- Regular monitoring of quality & safety & processes is a key GMP requirement:
 - confirms requirements are met (records evidence)
 - identifies problems at an early stage (management of nonconforming product & root cause analysis)
 - allows corrective actions to be taken as soon as possible
 - identifies improvements that can be made

QC testing & monitoring

- Final plasma component should:
 - not be haemolysed or lipaemic
 - not contain clots
 - be free of cellular contamination
 - have FVIII levels that meet specified requirements (plasma for labile proteins)
- Additional requirements may be set by the fractionator

QC testing & monitoring

- Key factors for QC testing in final plasma:
 - all plasma packs should be inspected for presence of visible:
 - haemolysis / red cell contamination / lipaemia
 - clots
 - statistically significant sample of plasma packs should be tested for
 - cellular contamination
 - FVIII levels (plasma for labile proteins)
 - additional testing if required by the fractionator

Summary

- Implementation of GMP provides a foundation for managing quality & safety that will facilitate improvements across the whole manufacturing process
- These improvements, together with key steps outlined in this presentation, will enable plasma quality to meet standards for fractionation
- The ability to send their plasma for fractionation will bring BEs in LMIC significant cost benefits & enable them to move towards self sufficiency in PDMPs

Thank You