

Plasma Fractionation Technologies Benefits and Limitations

Online Workshop organized by the Working Party for Global Blood Safety (GBS) of the ISBT

September 21, 2021 Jan M Bult, President Emeritus PPTA

Declaration of interest

Consulting services to

- Biopharma Plasma
- Plasma Protein Therapeutics Association
- Prolacta BioScience
- Prothya Biosolutions

Plasma Fractionation Technologies

Benefits & Limitations

History of Cohn Fractionation

Modifications to Cohn

3 Recent LMIC Examples

Main Implementation Challenges

Solution: Step-by-Step

6

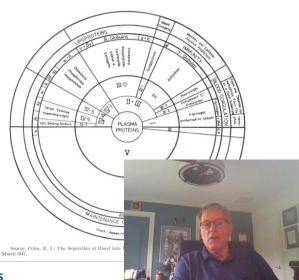
2

4

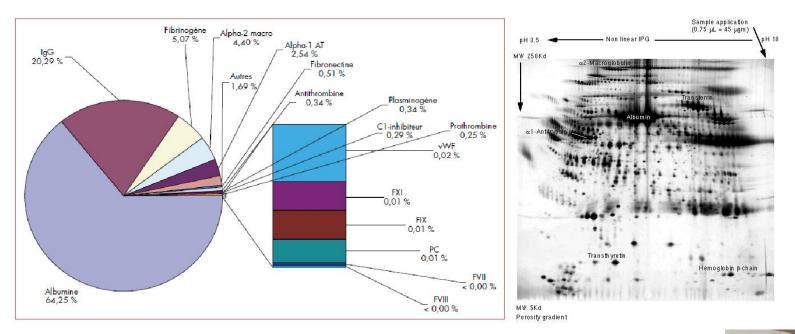
5

Key Points Learned

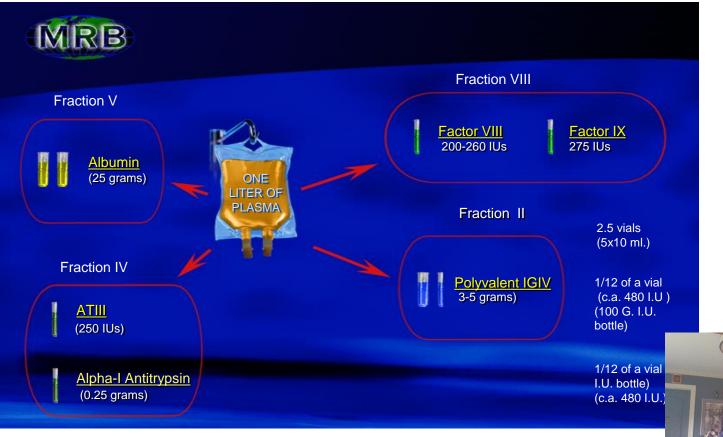
Edwin J. Cohn, PhD, 1892–1953



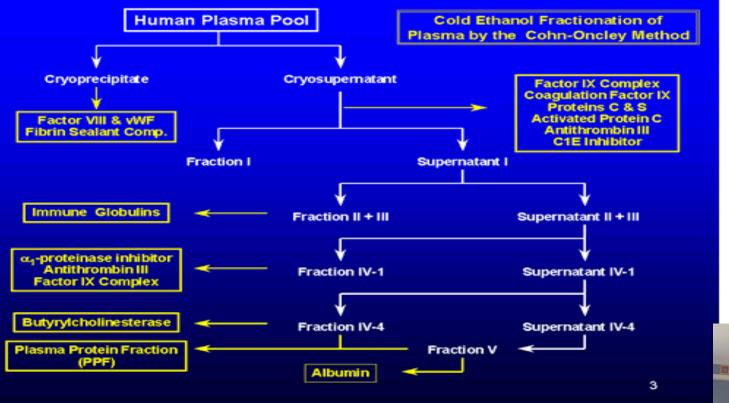
Ed_ I Cohn


- Developed techniques to isolate human serum albumin from plasma
- All Albumin prepared in his laboratory at Harvard Medical school was flown to Pearl Harbor
- Cohn worked with 15 chemists to define the characteristics of proteins

Plasma: Unique and Complex Biological Material


Unique combination of protein purification technologies to isolate abundant pro (albumin, immunoglobulins) and trace Proteins (factor VIII, Factor IX)

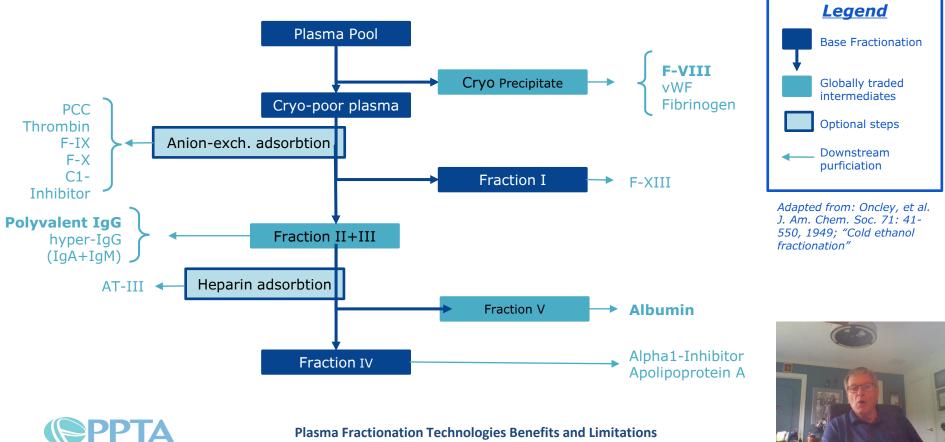
Source: Thierry Burnouf, IPFA Workshop Capetown, December 2015


Average Yield of Plasma Proteins Per Liter

Range of Plasma Derived Medicinal Products

Albumin	Anti coagulant	Coagulation factors	Immuno globulins	Protease inhibitors	Others
	Antithrombin	Factor II	Polyvalent*	Alpha – 1 antitrypsin	Coeruloplasmin
	Protein C	Factor VII	anti-CMV	C1-esterase inhibitor	IgA, IgM
		Factor VIII*	anti-D		Apolipoprotein A1
		Factor IX*	anti hepatitis B		Haptoglobin
		Factor X	anti-rabies*		Plasminogen
		Factor XI	anti-tetanus*		
		Factor XIII	anti—varicella zoster		
		Fibrinogen			
		Fibrin sealant			
		Prothrombin complex			
		Von Willebrand factor			
* WHO Essential Medicines					

Cohn-Oncley Fractionation and Products



Plasma Fractionation Technologies Benefits and Limitations

Oncley, et al. J. Am. Chem. Soc. 71: 41-550, 1949

Main Plasma Fractions and Products

Important to Consider

- Only high quality, well controlled raw material sources and well established production processes will result in high quality, safe products
- Uncompromised quality control and quality assurance is mandatory
- ✓ Deviations or process modifications can lead to serious product adverse events, e.g Fractionation I-II-III will increase IgG yield, but requires more efficient separation of "contaminating" proteins
- ✓ Risk of thromboembolic active substances not being separated as e.g immunoglobulins and FXIa are comparable in size and iso-electric point.
- ✓ NM- filtration requires specific know-how and virus reduction experiments to decide the pore size e.g 20 or 35 nm.
- ✓ Strategies for virus inactivation depend on the plasma protein product and its formulation e.g. liquid or freeze-dried.
- ✓ Continuous training and education of personnel is essential.

IT IS ALL IN THE DETAILS!

Purification Schemes of Selected IVIG Products

	«The process <i>is</i> the						
Flebogamma	Gamunex	Intratect	Kiovig	Octagam	Privigen	product»	
PEG precipitation Anion-exchange	addition of caprylate	Separation of Fraction I + III	Separation of Fraction I + III	Separation of Fraction I + III	caprylic acid fractionation	Sequence and conditions of each step are pivotal for	
chromatography	Depth filtration	Fraction II	Depth filtration	Fraction II	Depth filtration	purity AND safety* of a product.	
Ultra / diafiltration	addition of caprylate	Ultra/ diafiltration	Fraction II	Ultra/ diafiltration	pH4 incubation		
pH4 treatment	Depth filtration	Caprylic acid / Ca-acetate treatment	CM - Sepharose	S/D treatment	Depth filtration		
Pasteurization	pH adjustment		S/D Treatment			«Keep it simple »	
S/D treatment PEG precipitation	Anion exchange chromatography	S/D treatment	pH adjustment	Oil / solid phase extraction	Anion-exchange chromatography	The more process steps,	
TFF / resuspension	pH adjustment	Cation-exchange chromatography	Anion-exchange chromatography Depth filtration	pH4 treatment	20 nm nanofiltration	the lower the yield, the worse the economics.	
Ultra /diafiltration /	pH4 treatment						
formulation 35 and 20nm		20 nm nanofiltration	35 nm nanofiltration			e.g. for the undesired activation of F-XI or F-XII	
nanofiltration			pH4 treatment			Ada	
	Virus elimination steps, caprylic acid contributes to purification, too						

Ultra-Diafiltration, Product specific formulation Sterile filtration & aseptic filling

Modern Fractionation, Purification, Fill & Lyophilization Plant

Some Examples of Recent Improved Access to PDMP's in Resource Constrained Countries

Thailand

Ukraine

Biopharma is a company in Eastern Europe that has a state-of-the-art plant, built in 2019, to produce PDMP's Planned capacity: 1 million liter per year

- First step: sufficient supply of PDMP's to Ukraine
- Next step: Export

Ukraine

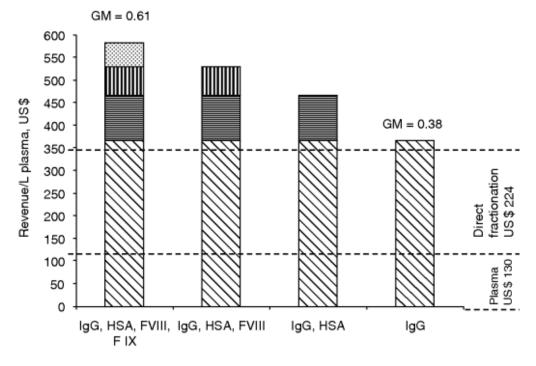
Total investments : \$100 - \$200 million (and counting)

Main Challenges for Implementation

It Is Not Easy

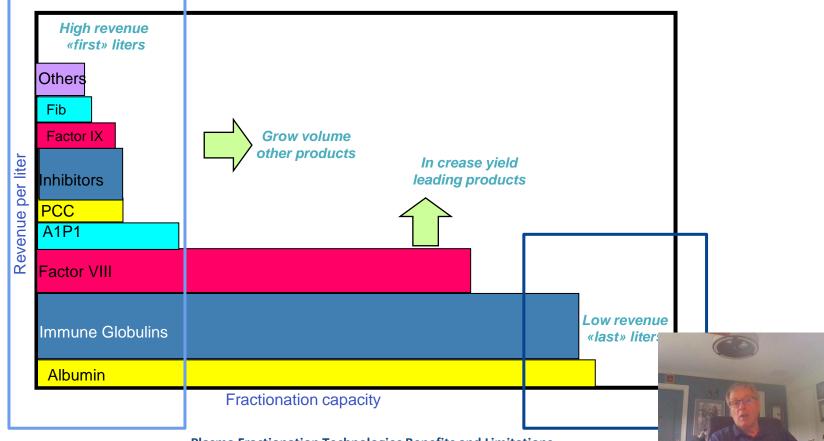
Novo Nordisk And HemaSure Make Plasma Deal

12-02-1995 🖷



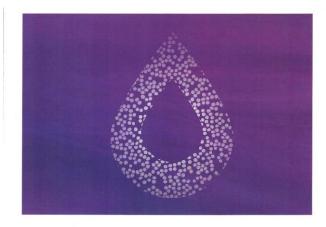
Plasma: Unique and Complex Biological Material

Source: Production of plasma proteins for therapeutic use, Wiley 2013, page 452

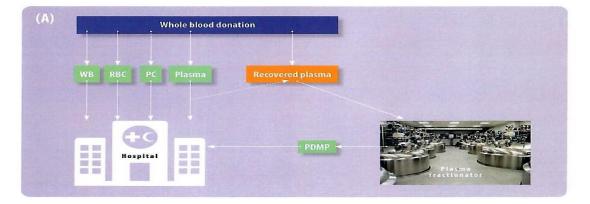


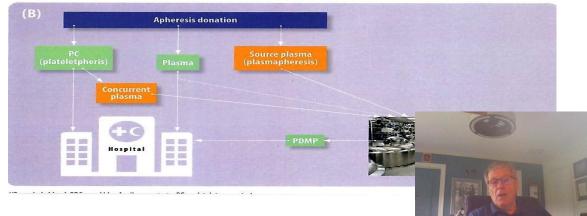
[©]IgG [■]HSA [■]FVIII [©]FIX

More Economics of Fractionation

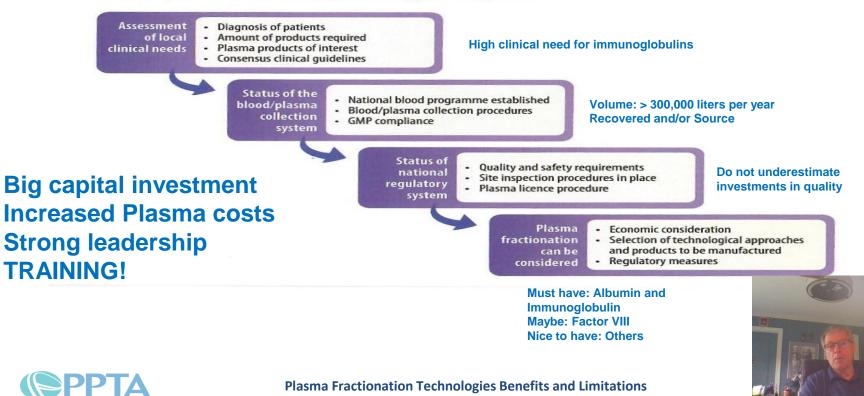


Proposed Solution Step-by-Step




From 2021 WHO Guidance

GUIDANCE ON INCREASING SUPPLIES OF PLASMA-DERIVED MEDICINAL PRODUCTS IN LOW- AND MIDDLE-INCOME COUNTRIES THROUGH FRACTIONATION OF DOMESTIC PLASMA



Step-by-Step Approach

Fig. 1. Capacity-building and decision-making steps of plasma fractionation programme to improve availability of PDMPs made from domestically produced plasma

What Else?

- > Determine minimum fractionation capacity, should be more than 200,000 liter per year
- Economics not favorable with e.g. 200,000 liter
 - 4-5 million gram albumin
 - approximately 800,000 gram immunoglobulin
 - approximately 40 million units FVIII
- Long term sourcing of plasma needs to be secured

After decision for domestic fractionation several steps need to be taken Select experienced, trust-worthy party for technology transfer Facility design by engineering company with plasma protein experience Equipment decision: design, qualification and validation Process and Product qualification and validation Personnel training programs Clinicals Ensuring c-GMP Implementation of Quality Systems e.g. Self-auditing, Deviation reports, Trei

Key Points Learned

Take Home Messages

- ✓ Building a fractionation plant requires serious capital
- Technology transfer should mean that well known technology is transferred
- Complex technology requires in depth training
- Process modifications can increase yield but also impurities
- Process change can affect multiple products
- Do not ignore the risk of thromboembolic active substances due to process modifications
- ✓ Focus on quality is paramount
- Each donation and each pool are different
- Constant risk of emerging pathogens
- ✓ More products per liter is economically important
- ✓ Not all products are the same: THE PROCESS IS THE PRODUCT

WALK BEFORE YOU RUN

Thank You

janmbult@jmbconsultancy.nl

www.PPTAGlobal.org www.DonatingPlasma.org

