Blood Components Resources
Scientific Publications
1. Platelet Cryopreservation
- Ehn et al. Cryopreserved platelets in a non-toxic DMSO-free solution maintain hemostatic function in vitro. International Journal of Molecular Sciences 2023; 24:13097. DOI: 10.3390/ijms241713097 PMID: 37685902 Weblink: https://www.mdpi.com/1422-0067/24/17/13097
- Waters et al. Strategies to improve platelet cryopreservation: A narrative review. Transfusion 2025; 65:740-749. DOI: https://doi.org/10.1111/trf.18204 PMID: 40059666 Weblink: https://pmc.ncbi.nlm.nih.gov/articles/PMC12005584/
- Reade et al. A randomized, controlled pilot clinical trial of cryopreserved platelets for perioperative surgical bleeding: the CLIP-I trial. Transfusion 2019; 59:2794-2804. DOI: https://doi.org/10.1111/trf.15423 PMID: 31290573 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.15423
- Johnson et al. In vitro comparison of cryopreserved and liquid platelets: potential clinical implications. Transfusion 2015; 55:838-847. DOI: https://doi.org/10.1111/trf.12915 PMID: 25371169 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.1291
2. Cold-stored platelets
- Neal et al. Early cold-stored platelet transfusion following traumatic brain injury: A randomized clinical trial. Annals of Surgery 2025; 281:796-805. DOI: https://doi.org/10.1097/SLA.0000000000006640 PMID: 39840438 Weblink: https://pmc.ncbi.nlm.nih.gov/articles/PMC11974628/
- Braathen et al. In vitro quality of cold and delayed cold-stored platelet concentrates from interim platelet units during storage for 21 days. Vox Sanguinis 2023; 118:463-470. DOI: 10.1111/vox.13437 PMID: 37166405 Weblink: https://onlinelibrary.wiley.com/doi/epdf/10.1111/vox.13437
- Nash et al. Quantitative increases of extracellular vesicles in prolonged cold storage of platelets increases the potential to enhance fibrin clot formation. Transfusion Medicine 2023; 33:467‑477. DOI: https://doi.org/10.1111/tme.12989 PMID: 37553476 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/tme.12989
- Warner et al. Transition from room temperature to cold-stored platelets for the preservation of blood inventories during the COVID-19 pandemic. Transfusion 2021; 61:72-77. DOI: https://doi.org/10.1111/trf.16148 PMID: 33029791 Weblink: https://pmc.ncbi.nlm.nih.gov/articles/PMC7675729/
- Wood et al. Maximising platelet availability by delaying cold storage. Vox Sanguinis 2018; 113:403‑411. DOI: https://doi.org/10.1111/vox.12649 PMID: 29633290 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.12649
3. Irradiation (Gamma and X-ray) of Blood Components
- de Korte et al. Timing of gamma irradiation and sex of blood donor influences in vitro characteristics of red cell concentrates. Transfusion 2019; 58:917-926. DOI: https://doi.org/10.1111/trf.14481 PMID: 29341199 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.14481
- Johnson et al. The in vitro quality of x-irradiated platelet components in PAS-E is equivalent to gamma-irradiated components. Transfusion 2021; 61:3075-3080. DOI: https://doi.org/10.1111/trf.16647 PMID: 34482545 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.16647
- Davis et al. X-irradiation and gamma-irradiation inactivate lymphocytes in blood components. Transfusion 2021; 61:3081-3086. DOI: https://doi.org/10.1111/trf.16674 PMID: 34554562 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.16674
- Marks et al. X- and gamma-irradiation have similar effects on the in vitro quality of stored red cell components. Transfusion 2021; 61:3214-3223 DOI: https://doi.org/10.1111/trf.16656 PMID: 34510450 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.16656
4. Washed Red Blood Cell Components
- Acker et al. Introduction of a closed system cell processor: Post-implementation monitoring of safety and efficacy. Transfusion 2016; 56:49-57. DOI: https://doi.org/10.1111/trf.13341 PMID: 26444143 Weblink: https://pubmed.ncbi.nlm.nih.gov/26444143/
- Hansen et al. Quality of red blood cells washed using a second wash cycle in an automated cell processor. Transfusion 2015; 55:2415-2421. DOI: https://doi.org/10.1111/trf.13166 PMID: 25988774 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.13166
- Hansen et al. Quality of red blood cells washed using an automated cell processor with and without irradiation. Transfusion 2014; 54:1585-1594. DOI: https://doi.org/10.1111/trf.12489 PMID: 24224608 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.12489
- Hansen et al. Quality of red blood cells washed using the ACP-215 cell processor: Assessment of optimal pre- and post-wash storage times and conditions. Transfusion 2013; 53:1772-1779. DOI: https://doi.org/10.1111/trf.12170 PMID: 23521180 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.12170
5. Whole blood
- Shea et al. Doing more with less: low-titer group O whole blood resulted in less total transfusions and an independent association with survival in adults with severe traumatic hemorrhage. Journal of Thrombosis and Haemostasis 2023; S1538-7836(23)00727-4. DOI: https://doi.org/10.1016/j.jtha.2023.09.025 PMID: 37797692 Weblink: https://linkinghub.elsevier.com/retrieve/pii/S1538-7836(23)00727-4
- Reddoch-Cardenas et al. Novel anticoagulant-preservative solution maintained the hemostatic function of cold stored whole blood for 56 days. Transfusion 2025: 65(S1):S185-S192. DOI: https://doi.org/10.1111/trf.18207 PMID: 40134105 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.18207
- Rosetto et al. Comparison of whole blood versus red blood cells and plasma to correct trauma-induced coagulopathy ex vivo. Transfusion 2025; 65:624-636. DOI: https://doi.org/10.1111/trf.18143 PMID: 39908221 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.18143
- Huish et al. A comparison of platelet function in cold-stored whole blood and platelet concentrates.Transfusion 2021; 61:3224-3235. DOI: https://doi.org/10.1111/trf.16657 PMID: 34622949 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.16657
- Sayre et al. Providing whole blood for an urban paramedical ambulance system. Transfusion 2021; 62:82-86 DOI: https://doi.org/10.1111/trf.16749 PMID: 34787330 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.16749
- Yazer et al. How do I implement a whole blood program for massively bleeding patients? Transfusion 2018; 58:622-628. DOI: https://doi.org/10.1111/trf.14474 PMID: 29332316 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/trf.14474
6. Alternatives to DEHP for blood bags
- Thelliez et al. Migration of di(2-ethylhexyl) phthalate, diisononylcyclohexane-1,2-dicarboxylate and di(2-ethylhexyl) terephthalate from transfusion medical devices in labile blood products: A comparative study. Vox Sanguinis 2023; 118:533-542. DOI:https://doi.org/10.1111/vox.13446 PMID: 37246454 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.13446
- Klei et al. Recommendations for in vitro evaluation of blood components collected, prepared and stored in non-DEHP medical devices. Vox Sanguinis 2023; 118:165-177. DOI: https://doi.org/10.1111/vox.13384 PMID: 36510371 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.13384
- Vermeulen et al. Clinical and in vitro evaluation of red blood cells collected and stored in a non-DEHP plasticized bag system. Vox Sanguinis 2022; 117:1163-1170. DOI: https://doi.org/10.1111/vox.13344 PMID: 36102116 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.13344
- Larsson et al. DEHT is a suitable plasticizer option for phthalate-free storage of irradiated red blood cells. Vox Sanguinis 2022; 117:193-200. DOI: https://doi.org/10.1111/vox.13177 PMID: 34268809 Weblink: https://onlinelibrary.wiley.com/doi/full/10.1111/vox.13177
- Larsson et al. Non-phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sanguinis 2021; 116:60-70. DOI: https://doi.org/10.1111/vox.12982 PMID: 32918773 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.12982
- Morishita et al. Pilot study on novel blood containers with alternative plasticizers for red cell concentrate storage. PLoS One 2017;12:e0185737. DOI: https://doi.org/10.1371/journal.pone.0185737 PMID: 28957448 Weblink: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185737
7. State of the art
-
Shih et al. Not all red cell concentrate units are equivalent: international survey of processing and in vitro quality data. Vox Sanguinis 2019; 114:783-794. DOI: https://doi.org/10.1371/journal.pone.0185737 PMID: 31637738 Weblink: https://onlinelibrary.wiley.com/doi/full/10.1111/vox.12836
-
Hansen et al. The effect of processing method on the in vitro characteristics of red blood cell products. Vox Sanguinis 2015; 108:350-358. DOI: https://doi.org/10.1111/vox.12233 PMID: 25678039 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.12233
-
Acker et al. Quality assessment of established and emerging blood components for transfusion. Journal of Blood Transfusion vol 2016, Article ID 4860284, 28 pages (2016). DOI: https://doi.org/10.1155/2016/4860284 PMID: 28070448 Weblink: https://pmc.ncbi.nlm.nih.gov/articles/PMC5192317/
-
Jordan et al. Assessing the influence of component processing and donor characteristics on quality of red cell concentrates using quality control data. Vox Sanguinis 2016; 111(1):8-15. DOI: https://doi.org/10.1111/vox.12378 PMID: 26991891 Weblink: https://onlinelibrary.wiley.com/doi/10.1111/vox.12378